
Commun. Comput. Phys.
doi: 10.4208/cicp.OA-2020-0214

Vol. 28, No. 5, pp. 1838-1885
November 2020

Butter�y-Net: Optimal Function Representation Based
on Convolutional Neural Networks

Yingzhou Li1, Xiuyuan Cheng1,� and Jianfeng Lu1,2

1 Department of Mathematics, Duke University, Durham, NC 27708, USA.
2 Department of Chemistry and Department of Physics, Duke University, Durham,
NC 27708, USA.

Received 30 October 2020; Accepted 6 November 2020

Abstract. Deep networks, especially convolutional neural networks (CNNs), have
been successfully applied in various areas of machine learning as well as to challenging
problems in other scienti�c and engineering �elds. This paper introduces Butter�y-net,
a low-complexity CNN with structured and sparse cross-channel connections, together
with a Butter�y initialization strategy for a family of networks. Theoretical analysis of
the approximation power of Butter�y-net to the Fourier representation of input data
shows that the error decays exponentially as the depth increases. Combining Butter�y-
net with a fully connected neural network, a large class of problems are proved to
be well approximated with network complexity depending on the effective frequency
bandwidth instead of the input dimension. Regular CNN is covered as a special case
in our analysis. Numerical experiments validate the analytical results on the approx-
imation of Fourier kernels and energy functionals of Poisson’s equations. Moreover,
all experiments support that training from Butter�y initialization outperforms training
from random initialization. Also, adding the remaining cross-channel connections,
although signi�cantly increases the parameter number, does not much improve the
post-training accuracy and is more sensitive to data distribution.

AMS subject classi�cations: 15A23, 65D05, 65F10, 62G08, 68W20, 68W25

Key words: Butter�y algorithm, convolutional neural network, Fourier analysis, deep learning.

1 Introduction

Deep neural network is a central tool in machine learning and data analysis nowadays [5].
In particular, convolutional neural network (CNN) has been proved to be a powerful tool

�Corresponding author. Email addresses: yingzhou.li@duke.edu (Y. Li), xiuyuan.cheng@duke.edu (X.
Cheng), jianfeng@math.duke.edu (J. Lu)

http://www.global-sci.com/cicp 1838 c2020 Global-Science Press

Y. Li, X. Cheng and J. Lu / Commun. Comput. Phys., 28 (2020), pp. 1838-1885 1839

in image recognition and representation. Deep learning has also emerged to be success-
fully applied in solving PDEs [6, 28, 37] and physics problems [4, 17, 35, 47, 53], showing
the potential of becoming a tool of great use for computational mathematics and physics
as well. Given the wide application of PDEs and wavelet based methods in image and
signal processing [8, 11, 39], an understanding of CNN’s ability to approximate differen-
tial and integral operators will lead to an explanation of CNN’s success in these �elds, as
well as possible improved network architectures.

The remarkable performance of deep neural networks across various �elds relies on
their ability to accurately represent functions of high-dimensional input data. Approxi-
mation analysis has been a central topic to the understanding of the neural networks. The
classical theory developed in 80’s and early 90’s [3,13,26] approximates a target function
by a linear combination of sigmoids, which is equivalent to a fully connected neural net-
work with one hidden layer. While universal approximation theorems were established
for such shallow networks, the research interest in neural networks only revived in recent
years after observing the successful applications of deep neural networks, particular the
superior performance of CNNs in image and signal processing.

Motivated by the empirical success, the approximation advantage of deep neural
networks over shallow ones has been theoretically analyzed in several places. How-
ever, most results assume stacked fully connected layers and do not apply to CNNs
which have speci�c geometrical constraints: (1) the convolutional scheme, namely local-
supported �lters with weight sharing, and (2) the hierarchical multi-scale architecture.
The approximation power of deep networks with hierarchical geometrically-constrained
structure has been studied recently [12,40,41], yet the network architecture differ from the
regular CNN. The approximation theory of CNN has been studied in [2, 54]. We review
the related literature in more detail below.

This paper proposes a speci�c architecture under the CNN framework based on the
Butter�y scheme originally developed for the fast computation of special function trans-
forms [42, 44, 52] and Fourier integral operators [9, 10, 31�34]. Butter�y scheme provides
a hierarchical structure with locally low-rank interpolation of kernel functions and can
be applied to solve many PDE related problems. In terms of computational complexity,
the scheme is near optimal for Fourier kernels and Fourier integral operators. The pro-
posed Butter�y-net explicitly adopts the hierarchical structure in Butter�y scheme as the
stacked convolutional layers. If the parameters are hard-coded as that in the Butter�y
scheme (Butter�y initialization), then Butter�y-net collectively computes the Fourier co-
ef�cients of the input signal with guaranteed numerical accuracy. Unlike regular CNN
which has dense cross-channel connections, the channels in the Butter�y-net have clear
correspondences to the frequency bands, namely the position in the spectral represen-
tation of the signal, and meanwhile, the cross-channel weights are sparsely connected.
In this paper, we also study Butter�y-net with dense cross-channel connections, which is
named In�ated-Butter�y-net. Regular CNN is a special In�ated-Butter�y-net [49]. Compar-
ing Butter�y-net and In�ated-Butter�y-net, Butter�y-net is much lighter: the model com-
plexity (in terms of parameter number) is O(K logN) and computational complexity is

Y. Li, X. Cheng and J. Lu / Commun. Comput. Phys., 28 (2020), pp. 1838-1885 1841

such that using anyone of them to extract a deep feature of length K from the input x can reduce
the effective dimension of the input data from N to K for neural network function approximation.

The dimension reduction is re�ected by the needed network complexity in approxi-
mating f (~x) by a fully-connected network, namely a reduction from a factor of #�N/s (for
a fully connected net to approximate f (~x) directly) to that of #�K/s (for a fully connected
net to approximate g, Butter�y-net to approximate B, and f (~x) � g(B~x)), where s is the
regularity level and # is the uniform approximation error of f . The precise statement is
given in Theorem 4.2.

Moreover, in the above statement, the family of Butter�y-nets can be replaced by the
corresponding family of In�ated-Butter�y-net with nb .K2logN parameters and the same
dimension reduction argument still holds. In particular, one member in the family of
In�ated-Butter�y-nets is a regular CNN. Hence, our approximation analysis covers regular
CNNs as a special case.

Our methodology and theoretical results can be generalized to signal ~x lying on a
d-dimensional grid, e.g., image data on a 2D grid. In this case, the Butter�y-net is a 2D
CNN (with sparse cross-channel connections) that provably approximates the kernel of
2D Fourier Transform. The connection and extension will be discussed later, see com-
ments beneath Theorem 2.1 and Remark 4.5.

1.1 Contributions

Our contributions can be summarized as follows.

1) We propose a family of novel neural network architectures, named Butter�y-nets, which
are composed of convolutional and transpose convolutional layers with sparse cross-
channel connections, plus a locally connected switch layer in between. An associated
Butter�y initialization strategy is proposed for Butter�y-nets to approximate Fourier
kernels. The Butter�y-net architecture can be in�ated via replacing the sparse cross-
channel connections by dense connections, and this contains regular CNN as a special
case.

2) The approximation error of Butter�y-nets representing the Fourier kernels is theoreti-
cally proved to be exponentially decay as the network depth increases. Concatenating
Butter�y-net (or its in�ated version) with a fully-connected layer, we provide an ap-
proximation analysis for a wide class of functions with frequency decay property and
the approximation complexity depends on the effective dimension K instead of the
input data dimension N. The regular CNN is covered as a special case.

3) Numerically, we apply Butter�y-net and its in�ated version to a wide range of datasets.
The successful trainings on all datasets support our approximation analysis. Further,
we �nd that training from Butter�y initialization in all cases outperforms training from
random initialization, especially when the output function only depends on a few fre-
quencies among the wide frequency band of the input data. Butter�y-net achieves

1842 Y. Li, X. Cheng and J. Lu / Commun. Comput. Phys., 28 (2020), pp. 1838-1885

similar post-training accuracy as its in�ated version with far less number of parame-
ters. Butter�y-net also admits better transfer learning capability when the distribution
of the testing data is shifted away from the training data.

1.2 Related works

Before we explain more details in the rest of the paper, we review some related works.

Fast algorithm inspired neural network structures. Fast algorithm has inspired several
neural network structures recently. Based on H-matrix and H2-matrix structure, Fan
and his coauthors proposed two multiscale neural networks [20, 21], which are more
suitable in training smooth linear or nonlinear operators due to the multiscale nature
of H-matrices. In addition to that, nonstandard wavelet form inspired the design of
BCR-Net [22], which is applied to address the inverse of elliptic operator and nonlinear
homogenization problem and recently been embedded in a neural network for solving
electrical impedance tomography [19] and pseudo-differential operator [23]. Multigrid
method also inspired MgNet [25]. In addition to the above approximation of relatively
smooth operators, Butter�y scheme inspired the design of SwitchNet [27], which is a non-
convolutional three layer neural network and addresses scattering problems.

Classical approximation results of neural networks. Universal approximation theorems
for fully-connected neural networks with one hidden layer were established in [13, 26]
showing that such networks can approximate a target function with arbitrary accuracy if
the hidden layer is allowed to be wide enough. In theory, the family of target functions
can include all measurable functions [26], when exponentially many hidden neurons are
used. Gallant and White [24] proposed �Fourier network�, proving universal approxi-
mation to squared-integrable functions by �rstly constructing a Fourier series approxi-
mation of the target function in a hard-coded way. These theorems are �rstly proved for
one-dimensional input, and when generalizing to the multivariate case the complexity
grows exponentially.

Using the Fourier representation of the target function supported on a sphere in Rd,
Barron [3] showed that the mean squared error of the approximation, integrated with
arbitrary data distribution on the sphere, decays as O(n�1) when n hidden nodes are
used in the single hidden layer. The results for shallow networks are limited, and the
approximation power of depth in neural networks has been advocated in several recent
works, see below. Besides, while the connection to Fourier analysis was leveraged, at
least in [3,24], it is different from the hierarchical function representation scheme as what
we consider here.

Approximation power of deep neural networks. The expressive power of deep neural
networks has drawn many research interests in recent years. The approximation power
of multi-layer restricted Boltzmann machines (RBM) was studied in [30], which showed
that RBMs are universal approximators of discrete distributions and more hidden layers

Y. Li, X. Cheng and J. Lu / Commun. Comput. Phys., 28 (2020), pp. 1838-1885 1843

improves the approximation power. Relating to the classical approximation results in
harmonic analysis, Bölcskei et al. [7] derived lower bounds for the uniform approxima-
tion of square-integrable functions, and proved the asymptotic optimality of the sparsely
connected deep neural networks as a universal approximator. However, the network
complexity also grows exponentially when the input dimension increases.

The approximation advantage of deep architecture over shallow ones has been stud-
ied in several works. Delalleau and Bengio [14] identi�ed a deep sum-product network
which can only be approximated by an exponentially larger number of shallow ones.
The exponential growth of linear regions as the number of layers increases was stud-
ied in [43, 48]. Eldan and Shamir [18] constructed a concrete target function which dis-
tinguishes three and two-layer networks. Liang and Srikant [36] showed that shallow
networks require exponentially more neurons than deep networks to obtain a given ap-
proximation error for a large class of functions. The advantage of deep ReLU networks
over the standard single-layer ones was analyzed in [51] in the context of approximation
in Sobolev spaces. Lu et al. [38] shows the advantage of deep ReLU networks in ap-
proximating smooth (band-limited) functions. The above works address deep networks
with fully-connected layers, instead of having geometrically-constrained constructions
like CNNs.

Deep neural networks with such geometric constraints are relatively less analyzed.
The approximation power of a hierarchical binary tree network was studied in [40, 41]
which supports the potential advantage of deep CNNs. Cohen et al. [12] used convolu-
tional arithmetic circuits to show the equivalence between a deep network and a hierar-
chical Tucker decomposition of tensors, and proved the advantage of depth in function
approximation. The networks being studied differ from the regular CNNs widely used in
the typical real world applications. Recently, Zhou [54] proposed the universal approxi-
mation theory of deep CNN with an estimation on the number of free parameters. Bao
et al. [2] shows the approximation power of CNNs over deep neural networks without
constraints on a class of functions. Comparing to [54], our analysis covers a wider range
of networks and the approximation complexity is much lower on a restricted function
class. Comparing to [2], different function classes are discussed and we both show the
advantage of CNN.

1.3 Organization

The rest of this paper is organized as follows. Building on top of the traditional But-
ter�y literature, Section 2 �rst shows the low-rank property of Fourier kernel and illus-
trates the Butter�y algorithm tailored for Fourier kernel. Section 3 proposes interpolative
convolutional layer as building blocks for Butter�y-net followed by the Butter�y-net ar-
chitecture with Butter�y initialization and its matrix representation. Section 4 analyzes
the approximation power of Butter�y-net on Fourier kernels and its extension to general
functionals. Numerical results of Butter�y-net and In�ated-Butter�y-net are presented in
Section 5 including the performance comparison of network architectures, initializations,

1844 Y. Li, X. Cheng and J. Lu / Commun. Comput. Phys., 28 (2020), pp. 1838-1885

and datasets. Finally, in Section 6, we conclude the paper together with discussion on
future directions.

2 Preliminaries

This section paves the path to Butter�y-net. We �rst derives a low-rank interpolation of
the Fourier kernel, which is crucial to the ef�ciency of Butter�y scheme and Butter�y-net.
Then in Section 2.2, we reviews the Butter�y algorithm for Fourier kernel. Readers, who
are familiar with butter�y scheme, should be safe to skip it.

2.1 Low-rank approximation of Fourier kernel

Fourier kernel throughout this paper is de�ned as

K(x,t)= e�2p�x�t , x 2 [K0,K0+K), t2 [0,1), (2.1)

where [K0,K0+K) denotes the frequency window of interests, K0 denotes the starting
frequency, and K denotes the frequency window width. It is well-known that the discrete
Fourier transform (DFT) matrix, i.e., uniform discretization of (2.1) with proper scaling,
has orthonormal rows and columns. Hence, the DFT matrix is a unitary matrix of full
rank and the Fourier kernel is also full rank. Theorem 2.1 show when the Fourier kernel is
restricted to certain pairs of subdomains of [0,1) and [K0,K0+K), it has low-rank property.

We �rst give a brief introduction of the Chebyshev interpolation with r points. The
Chebyshev grid of order r on [� 1

2 , 1
2] is de�ned as

�
zi =

1
2

cos
�

(i�1)p
r

��r

i=1
. (2.2)

The Chebyshev interpolation of a function f (x) on [� 1
2 , 1

2] is de�ned as

Pr f (x)=
r

å
k=1

f (zk)Lk(x), (2.3)

where Lk(x) is the Lagrange polynomial as

Lk(x)= Õ
p 6=k

x�zp

zk �zp
. (2.4)

Several earlier works [9, 10, 33] proved the Chebyshev interpolation representation for
Fourier integral operators, which are generalized Fourier kernel. Theorem 2.1 is a special
case of these earlier work but with more precise and explicit estimation on the prefactor.

Y. Li, X. Cheng and J. Lu / Commun. Comput. Phys., 28 (2020), pp. 1838-1885 1845

Theorem 2.1. Let r be the number of Chebyshev points, B � [0,1) and A � [K0,K0+K) denote
a domain pair such that w(A)w(B) � r

pe , where w(�) is the domain length function. Then there
exists low-rank representations of the Fourier kernel restricted to the domain pair

sup
x2A,t2B

�����
e�2p�x�t�

r

å
k=1

e�2p�x�tke�2p�x0�(t�tk)Lk(t)

�����
�
�

2+
2
p

lnr
��

pew(A)w(B)
2r

�r

, (2.5)

and

sup
x2A,t2B

�����
e�2p�x�t�

r

å
k=1

e�2p�(x�xk)�t0Lk(x)e�2p�xk �t

�����
�
�

2+
2
p

lnr
��

pew(A)w(B)
2r

�r

, (2.6)

where x0 and t0 are the centers of A and B, and xk and tk are Chebyshev points on A and B.

The proof of Theorem 2.1 is deferred to Appendix A. This property is also known
as complementary low-rank property [32, 33]. In [33], an analogous theorem is proved
for d-dimensional Fourier integral operators, where a special corona domain partition
on the frequency domain is introduced to handle the singularity near the origin. For-
tunately for d-dimensional Fourier kernels, there is no such singularity. As a result, the
extension to d-dimensional Fourier kernel can be simpli�ed from the analysis in [33].
Thus, by constructing a d-dimensional Chebyshev interpolation as a tensor product of
one dimensional Chebyshev interpolations, one can adopt the same proof of Theorem
2.1 in Appendix A and obtain an analog approximation bound as in Theorem 2.1 for
d-dimensional Fourier kernel. The analog approximation bound has the same growth
factor as that in Theorem 2.1 for r being the Chebyshev points on each dimension, while
the prefactor is bounded by

�
2+ 2

p lnr
�d.

2.2 Butter�y algorithm for Fourier kernel

This section brie�y describes the Butter�y algorithm tailored for Fourier kernel based on
Theorem 2.1. Given a function x(t) discretized on a uniform grid, ffltq = q�1

N gN
q=1, the goal

is to compute the discrete Fourier transform f �x(flxp), flxp =K0,��� ,K0+K�1g de�ned by

�x(flxp)=å
fltq

e�2p� flxp fltq x(fltq), flxp =K0,��� ,K0+K�1. (2.7)

Without loss of generality, we assume N �K throughout this paper.

Hierarchical domain partition. In order to bene�t from Theorem 2.1, we �rst de�ne the
L layer hierarchical partition of [0,1) for L� logN. � Extension to L> logN is possible but
not common in butter�y scheme. Let B0

0 =[0,1) be the domain on layer 0. On layer 1, the

�Without further explanation, log denotes logarithm base 2 and ln denotes natural logarithm base e.

1846 Y. Li, X. Cheng and J. Lu / Commun. Comput. Phys., 28 (2020), pp. 1838-1885

Table 1: Complementary domain pairs used in Butter�y-net on all layers.]fig and]fjg are lengths of index i
and j, w(�) is the domain length function, and Lmin =min(Lt,logK�Lx).

Frequency Time
‘ range domain]fig w(A) domain]fjg w(B) w(A)w(B)
0�‘� Lmin A‘

i 2‘ K �2�‘ BL�‘
j 2L�‘ 2‘�L K �2�L

Lmin <‘� Lt A‘
i 2Lmin K �2�Lmin BL�‘

j 2L�‘ 2‘�L K �2‘�Lmin�L

Lt <‘� L A‘
i 2‘�Lt+Lmin K �2�‘+Lt�Lmin BL�‘

j 2L�‘ 2‘�L K �2�Lx�Lmin

domain B0
0 is evenly partitioned into B1

0 = [0, 1
2) and B1

1 = [1
2 ,1). We conduct the partition

recursively, i.e., B‘�1
j is evenly partitioned into B‘

2j and B‘
2j+1. In the end, the partition on

layer ‘ is fB‘
j , j=0,��� ,2‘�1g and each B‘

j =[j
2‘ , j+1

2‘) is of length 2�‘.
Before partitioning the frequency domain, we introduce two more notations, Lt and

Lx , which split the L layers into two group, i.e.,

L= Lt+Lx . (2.8)

The split of L into Lt and Lx will used in Section 3.2 and later analysis. We will apply
(2.5) for the �rst Lt layers to compress the kernel and apply (2.6) for the later Lx layers.
Lx satis�es the constraint 0� Lx � logK.

The partitioning of the frequency domain is described as follows. For layers ‘�Lmin=
min(Lt,logK�Lx), we partition the frequency domain in the same way as for the time
domain. Hence the partition is fA‘

i , i=0,��� ,2‘�1g and each A‘
i =[K0+ i

2‘ K,K0+ i+1
2‘ K) is

of length K �2�‘. For layers Lmin < ‘ � Lt, the partition remains the same as that on layer
Lmin. The partition is fA‘

i , i =0,��� ,2Lmin �1g and each A‘
i = [K0+ i

2Lmin
K,K0+ i+1

2Lmin
K) is of

length K�2�Lmin . For the rest layers Lt <‘�L, the hierarchical bi-partition is applied again
starting from domains on layer Lmin. The partition is fA‘

i , i = 0,��� ,2‘�Lt+Lmin �1g and
each A‘

i =[K0+ i
2‘�Lt+Lmin

K,K0+ i+1
2‘�Lt+Lmin

K) is of length K �2�‘+Lt�Lmin .
Table 1 lists all domain pairs used in Butter�y algorithm and Butter�y-net, which is

important to the later complexity analysis. Theorem 2.1 is applied to all these domain
pairs in our later analysis. Notice that when L � logK, we have Lmin = Lt and the second
range of ‘ in Table 1 is empty.

Butter�y algorithm. For properly chosen r, the Fourier kernel restricted to each do-
main pair in Table 1 admits the low-rank representation and hence the submatrix
fe�2p� flxp fltqg flxp2A‘

i ,fltq2BL�‘
j

is approximately of rank r. An explicit formula for the low-rank
approximation is given by a discrete version of Theorem 2.1. Then the Butter�y algorithm
for Fourier kernel can be described layer by layer as follows.

1. Interpolation (‘ = 0). For A = A0
0 and each subdomain B = BL

j , conduct a coef�cient
transference from uniform grid in B to Chebyshev points in B and denote the trans-

Y. Li, X. Cheng and J. Lu / Commun. Comput. Phys., 28 (2020), pp. 1838-1885 1847

ferred coef�cients as flAB
k g1�k�r, i.e.,

lAB
k = å

t2B
e�2p�x0�(t�tk)Lk(t)x(t), 1� k� r, (2.9)

where x0 is the center of A and tk denotes the Chebyshev point. According to The-
orem 2.1, we note that

�x(flxp)= å
B=fBL

j g
å
fltq2B

e�2p� flxp�fltq x(fltq)� å
B=fBL

j g
å

tk2B
e�2p� flxp�tklAB

k , flxp 2 A, (2.10)

where fltq and flxp denote uniform grid points and the approximation accuracy is
controlled by r and L based on (2.5).

2. Recursion (‘=1,��� ,Lt). For each domain pair (A,B)=(A‘
i ,B

L�‘
j), construct the trans-

ferred coef�cients flAB
k g1�k�r. Let P denote the parent of A and C denote a child

of B at layer ‘�1. Throughout, we shall use the notation C � B when C is a child of
B. At layer ‘�1, the coef�cients flPC

s g1�s�r satisfy

�x(flxp)� å
C=fBL�‘+1

j g
å

tc
s2C

e�2p� flxp�tc
s lPC

s = å
B=fBL�‘

j g
å

C�B
tc
s2C

e�2p� flxp�tc
slPC

s , flxp 2 P. (2.11)

Since A � P, the above approximation holds for flxp 2 A as well. Now conduct a
coef�cient transference from Chebyshev points in C � B to Chebyshev points in B
and denote the transferred coef�cients as flAB

k g1�k�r, i.e.,

lAB
k = å

C�B
tc
s2C

e�2p�x0�(tc
s�tk)Lk(ts)lPC

s , 1� k� r, (2.12)

where x0 denotes the center of A, tc
s and tk denote the Chebyshev in C and B respec-

tively. According to Theorem 2.1, the transferred coef�cients admit the approxima-
tion

�x(flxp)� å
B=fBL�‘

j g
å

tk2B
e�2p� flxp�tk lAB

k , flxp 2 A. (2.13)

3. Switch (‘ = Lt). For the layer visited ‘ � Lt, the Chebyshev interpolation is applied
to variable t, while for layer ‘> Lt the interpolation is applied to variable x. Hence,
we switch the role of t and x at this step. For all pairs (A,B) = (ALt

i ,BLx
j) in the last

step, lAB
s denotes the coef�cients obtained by Chebyshev interpolation. Let fxA

k gk
and ftB

s gs denote the Chebyshev points in A and B respectively. Then we abuse
notation lAB

k and de�ne Fourier transformed coef�cients for (A,B) as

lAB
k :=

r

å
s=1

e�2p�xA
k �tB

s lAB
s � å

fltq2B
e�2p�xA

k �fltq x(fltq), (2.14)

1848 Y. Li, X. Cheng and J. Lu / Commun. Comput. Phys., 28 (2020), pp. 1838-1885

where fltq denotes the original uniform distributed points in B and the approxima-
tion is due to the de�nition of lAB

s and (2.6).

4. Recursion (‘ = Lt+1,��� ,Lt+Lx). For each pair (A,B) = (A‘
i ,B

L�‘
j), and the corre-

sponding parent domain P and child domain C of A and B respectively, the coef�-
cients flPC

s g1�s�r satisfy
lPC

s � å
fltq2C

e�2p�xs�fltq x(fltq), (2.15)

where xs denotes the Chebyshev points in P. Given the second approximation in
Theorem 2.1, we have, with notation flxp and xk being uniform points and Chebyshev
points in A respectively,

�x(flxp)

= å
B=fBL�‘

j g
å

C�B
fltq2C

e�2p� flxp�fltq x(fltq)

� å
B=fBL�‘

j g
å

C�B
fltq2C

å
xk2A

e�2p�(flxp�xk)�tC
0 Lk(flxp)e�2p�xk�fltq x(fltq)

� å
B=fBL�‘

j g
å

C�B
fltq2C

å
xk2A

e�2p�(flxp�xk)�tC
0 Lk(flxp)

0

@ å
x p

s 2P

e�2p�(xk�x p
s)�tC

0 Ls(xk)e�2p�x p
s �fltq

1

Ax(fltq)

� å
B=fBL�‘

j g
å

xk2A
e�2p�(flxp�xk)�tC

0 Lk(flxp)

0

@ å
x p

s 2P
å

C�B
e�2p�(xk�x p

s)�tC
0 Ls(xk)lPC

s

1

A, (2.16)

where tC
0 denotes the center of C, the �rst and second approximation are due to

(2.6) and the last approximation comes from the de�nition of lPC
s . The summations

in the bracket in the last line of (2.16) de�nes a transference between coef�cients.
Hence, lAB

k de�ned as

lAB
k = å

x p
s 2P

å
C�B

e�2p�(xk�x p
s)�tC

0 Ls(xk)lPC
s , (2.17)

naturally satis�es (2.15).

5. Interpolation (‘= L). Finally, ‘= L, for B = B0
0 and each A= AL

i , we approximate the
�x(flxp) for flxp 2 A as

�x(flxp)= å
fltq2B

e�2p� flxp�fltq x(fltq)

� å
fltq2B

å
xk2A

e�2p�(flxp�xk)�t0Lk(flxp)e�2p�xk �fltq x(fltq)� å
xk2A

e�2p�(flxp�xk)�t0Lk(flxp)lAB
k .

(2.18)

1850 Y. Li, X. Cheng and J. Lu / Commun. Comput. Phys., 28 (2020), pp. 1838-1885

Wk2 ,i,k1 for i = 0,��� ,w�1, k1 = 1,��� ,c1, and k2 = 1,��� ,c2. The output of the convolutional
layer, under these notations, is written as

y(j,k2)= å
0�i�w�1
1�k1�c1

Wk2,i,k1 x(i+s(j�1),k1), (3.1)

where s � 1 is the stride size and j = 0,��� ,(n�w)/s denotes the data index of output. In
many cases, it is more convenient to unfold the channel index into a vector as the input
data, i.e., x[ic1+k1] = x(i,k1), y[jc2 +k2] = y(j,k2), and W[k2,iw+k1]=Wk2 ,i,k1 . Hence (3.1)
can be represented as the matrix vector product,

y(j,:)=y[jc2 +(1 : c2)]=Wx[sc1 j+(1 :wc1)], (3.2)

where Matlab notation is adopted. Without considering the weight sharing of bias term
in the convolution layer, all channel direction can be unfolded into the data dimension
and the convolution is modi�ed as a block convolution. Such an unfolded convolutional
layer will be called the interpolation convolutional layer. Interpolation convolutional
layer is a way to understand the relation between channel dimension and data dimen-
sion, while, in practice, it is still implemented through regular convolutional layer.

The representation of interpolation convolutional layer is motivated by the observa-
tion that function interpolation can be naturally represented as a multi-channel convolu-
tion. In this setting, unfolding channels is more natural. The connection between function
interpolation and coef�cient transference in Butter�y algorithm, e.g., (2.9), (2.12), (2.17)
and (2.18) lies in the fact that the Lagrange polynomials only depends on the relative dis-
tance of points. Hence can be realized by a convolutional kernel. Let B0,B1,��� ,BJ�1 be a
equal spaced partition of [0,1), i.e., Bj = [j/J, j+1/J), and tBj

k1
denote the k1-th discretization

point in Bj for k1 = 1,��� ,c1. We further assume that the locations of tBj
k1

relative to Bj are
the same for all j. The input data is viewed as the function x(t) evaluated at the points
tBj
k1

, i.e., x(j,k1) = x(tBj
k1

). Let tBj
k1

be the interpolation points on Bj, with the Lagrange basis
polynomial given by

Lk1 (s)=
c1

Õ
p=1
p 6=k1

s�tBj
p

tBj
k1

�tBj
p

, s2 Bj. (3.3)

The interpolated function of x(t) at sBj
k2

for k2 =1,��� ,c2 is then de�ned as

x(sBj
k2

)�y(j,k2)=
c1

å
k1=1

Lk1(sBj
k2

)x(tBj
k1

)=
c1

å
k1=1

c1

Õ
p=1
p 6=k1

sBj
k2

�tBj
p

tBj
k1

�tBj
p

x(j,k1)

=
c1

å
k1=1

c1

Õ
p=1
p 6=k1

sB0
k2

�tB0
p

tB0
k1

�tB0
p

x(j,k1), (3.4)

Y. Li, X. Cheng and J. Lu / Commun. Comput. Phys., 28 (2020), pp. 1838-1885 1851

where j = 0,��� , J�1. The last equality in (3.4) is due to the fact that each fraction in (3.4)
depends only on the relative distance and is thus independent of Bj. Therefore, we could
denote Wk2 ,i,k1 = Õp 6=k1

(sB0
k2

�tB0
p)/(tB0

k1
�tB0

p), and thus the formula (3.4) can be interpreted as
convolution (3.1) with the stride size s being the same as the �lter size w, i.e., s = w.
In this representation, the two channel indices k1 and k2 denote the original points and
interpolation points within each domain Bj. Therefore, unfolding the channel index of
both x and y leads to the natural ordering of the index of points on [0,1).

For CNN with multiple convolutional layers, the unfolding of the channel index
could be done recursively. Fig. 2(a) illustrates 1D interpolation convolutional layers,
whereas Fig. 2(b) shows its unfolded representation. Gray zones in both �gures indi-
cate the data dependency between layers. Fig. 2(b) can also be understood as a recursive
function interpolation. The domain is �rst divided into four subdomains and the �rst
layer interpolates the input function within each subdomain to its three interpolation
points. The layer afterwards merges two adjacent subdomains into a bigger subdomain
and interpolates the function de�ned on the previous 6 interpolation points to the new 3
interpolation points on the merged subdomain.

If the assumption w = s is removed, the convolutional layer can still be understood
as an interpolation with overlapping subdomains. Similar idea is used in Simpson’s rule
and multi-step methods.

3.2 Butter�y-net architecture

This section formally introduce Butter�y-net architecture. We follow the exact structure of
Butter�y algorithm here. Parallel reading of Section 2.2 and this section is recommended.
For each layer, we introduce the neural network structure followed by specifying the
pre-de�ned Butter�y initialization and an explanation related to the Fourier transform.

Let x(t) be the input data viewed as a signal in time. Time-frequency analysis usu-
ally decomposes the signal into different modes according to frequency range, e.g., high-,
medium-, low-frequency modes. Most importantly, once the signal is decomposed into
different modes, they are analyzed separately and will not be mixed again. This corre-
sponds to the non-mixing channel idea in Butter�y-net and the non-mixing channel has
an explicit correspondence with frequency modes.

We adopt the same notations as in Section 2.2: the input vector is of length N and the
output is a feature vector of length K. Let L denote the number of major layers in the
Butter�y-net, and r denote the size mixing channels. Further Lt and Lx denote the num-
ber of layers before and after the switch layer with L = Lt+Lx . We assume L � logN and
Lx �logK. The input tensor is denoted as f (t,1) for t=0,��� ,N�1. If Butter�y initialization
is used, we construct an L = Lt+Lx layer hierarchical partition of both domains as in Ta-
ble 1. Since the input vector, the output vector, and the weights in Butter�y algorithm are
of complex value, the connection between complex-valued operations and real-valued
operations are complicated. Under ReLU activation function, the connection is detailed

1852 Y. Li, X. Cheng and J. Lu / Commun. Comput. Phys., 28 (2020), pp. 1838-1885

in Appendix B. Throughout the Butter�y-net, a general tensor notation l(‘)(i, j,k) is used,

l(‘)(i, j,k)=l
A‘

i BL�‘
j

k , (3.5)

corresponding to coef�cients in Butter�y algorithm in Section 2.2. The index k denotes the
mixing channel. The index i and j denote the non-mixing channel and data dimension
before switch layer and denote the data dimension and non-mixing channel after switch
layer. The range of index ‘, i, and j can be found in Table 1.

Then the Butter�y-net architecture is described as follows under complex-valued op-
erations.

1. Interpolation (‘ = 0). Let m = N/2L denote the �lter size, which corresponds to the
number of points in each BL

j . A 1D convolution layer with �lter size m, stride size
m and output channel r is applied to x(:,1) together with added bias term and ReLU
activation. The weight tensor is denoted as W(0)

k,q,1, where k=1,��� ,r and q =1,��� ,m.
This layer maps the input tensor x to an output tensor l(0).

Following the notation in (2.9), the weight tensor can be initialized as

W(0)
k,q,1

�= e�2p�x0�(fltq�tk)Lk(fltq), 1� k� r and 1�q�m, (3.6)

where �= denotes extended assign operator as de�ned in Appendix B.

This step interpolates function from uniform grid points to Chebyshev points.
When the frequency domain of the input signal is not symmetric around origin,
this step also extracts extra phase term.

2. Recursion (‘=1,��� ,Lt). The input and output tensors at layer ‘ are l(‘�1) and l(‘).
For each of the non-mixing channel at previous layer, two (for ‘� Lmin) or one (for
Lmin < ‘ � Lt) 1D convolution layers with �lter size 2, stride 2 and output channel
r are applied together with bias term and ReLU activation. The weight tensors are
denoted as and W(‘),i

k,c,s , where k,s = 1,��� ,r and c corresponds to the index of child
domain C of B.

Following the notations in (2.12), the weight tensor can be initialized as

W(‘),i
k,c,s

�= e�2p�x i
0�(tc

s�tk)Lk(tc
s), (3.7)

where x i
0 denotes the center of A‘

i , tc
s denotes the Chebyshev points in Cc = BL�‘+1

c
and tk denotes the Chebyshev points in BL�‘

0 .

Each x i
0 is the center of A‘

i corresponding to different frequency domain. Different
frequency component in the input signal is now organized in different non-mixing
channels. They will be transformed independently later which is related to the
orthogonality of basis functions in different non-overlapping frequency domains.

Y. Li, X. Cheng and J. Lu / Commun. Comput. Phys., 28 (2020), pp. 1838-1885 1853

3. Switch (‘ = Lt). This layer is a special layer of local operations. Denote the input
tensor as l(Lt)(i, j,s) and the dense weights as W(Lt),i,j

k,s for k,s = 1,��� ,r and i, j with
range in Table 1. For each i, j, W(Lt) is a r by r dense matrix. The operation at this
layer is as follows,

l(Lt)(i, j,k)=
r

å
s=1

W(Lt),i,j
k,s l(Lt)(i, j,s) (3.8)

for each pair of i, j. A bias term and ReLU layer are applied to the output tensors.

Following the notation in (2.14), the dense weight tensors can be initialized as

W(Lt),i,j
k,s

�= e�2p�x
A

Lt
i

k �t
B

Lx
j

s , (3.9)

where xALt
i

k and t
B

Lx
j

s are Chebyshev points in ALt
i and BLx

j respectively.

For each i, j, the Fourier operator is applied at this layer. Afterwards, interpolation
is applied again in frequency domains.

4. Recursion (‘ = Lt +1,��� ,Lt+Lx). The input and output tensors at layer ‘ are l(‘�1)

and l(‘). The weight tensors are denoted as and W(‘),j
k,c,s , where k,s = 1,��� ,r and

c corresponds to the index of child domain C of B. For each of the non-mixing
channel j, one 1D convolution layer is performed as

l(‘)(i, j,k)=
r

å
s=1

å
c=0,1

W(‘),j,a
k,c,s l(‘�1)(bi/2c,2j+c,s), (3.10)

where a = i mod 2. Such a convolution is also known as transposed convolution.
This transpose property will become more clear later when the matrix representa-
tion is derived.

Following the notations in (2.17), the weight tensor can be initialized as

W(‘),j,a
k,c,s

�= e�2p�(xa
k�xs)�t2j+c

0 Ls(xa
k), (3.11)

where t2j+c
0 denotes the center of C = BL�‘+1

2j+c , xs denotes the Chebyshev points in
A‘�1

0 , xa
k denotes the Chebyshev points in A‘

a for a=0,1.

This part is similar to step 3. Instead of organizing output in non-mixing frequency
domains, different time component in the input signal is now organized in different
non-mixing channel. This is due to the complementary property between time and
frequency.

5. Interpolation (‘ = L). Let m = K
2Lx+Lmin

denote the output channel size, which corre-
sponds to the number of points in each AL

i . A 1D convolution layer with �lter size

1854 Y. Li, X. Cheng and J. Lu / Commun. Comput. Phys., 28 (2020), pp. 1838-1885

1, stride size 1, input channel r and output channel m is applied to l(L) together
with added bias term and ReLU activation. The weight tensor is denoted as W(L)

p,0,k,
where p=1,��� ,m and k=1,��� ,r.

Following the notations in (2.18), the weight tensor can be initialized as

W(L)
p,0,k

�= e�2p�(flxp�xk)�t0Lk(flxp), 1� p�m and 1� k� r. (3.12)

This layer generates the output tensor denoted as �x(i,p), for i=0,��� ,2L�1 being the
index of data and p = 1,��� ,m being the index of channel. Reshaping �x(s) = �x(i,p)
for s= im+p gives a single vector output, which is analogy of the output vector of
the Butter�y algorithm.

6. Task-dependent layers. Any type of layers, e.g., dense layer, convolution layer, trans-
pose convolution layer, etc., can be built on top of �x and approximate the desired
task. These layers are creatively designed by users, which are not regarded as parts
of Butter�y-net in the following.

To further facilitate the understanding of the Butter�y-net, Fig. 1 demonstrates an ex-
ample of the Butter�y-net with input vector being partitioned into 16 parts. We adopts the
unfolded representation of the mixing channel as in Fig. 2(b), and the channel direction
only contains non-mixing channels.

In the above description, the non-mixing channels and mixing channels are indexed
different. If we combine this two indices into a single channel index, and allow all channel
connections to be dense, we de�ne another family of neural networks, namely In�ated-
Butter�y-net. If the Butter�y initialization in Butter�y-net is applied to In�ated-Butter�y-net
and the rest channel connections are initialized as zero, then In�ated-Butter�y-net is an
identical operator as Butter�y-net with Butter�y initialization.

Also notice that Lx is a tunable parameter for both Butter�y-net and In�ated-Butter�y-
net. When Lx = 0, all transpose convolutional layers disappear. In this case, the switch
layer and interpolation layer ‘ = L can be combined as a entry-wise product operator,
which can be implemented through a dense layer. In�ated-Butter�y-net with Lx =0 is then
a regular CNN and Butter�y-net is a CNN with channel sparse structure [49]. All of our
following complexity analysis and approximation analysis apply to Lx =0 with/without
merging switch layer and interpolation layer ‘= L.

A comment on the activation function: In the above construction of Butter�y-net,
speci�cally, in the extended assign operator �= de�ned in Appendix B, we use the
ReLU function ReLU(x) = (x)+ to represent the identify mapping Id(x) by Id(x) =
ReLU(x)�ReLU(�x). Generally, we can adopt other activation function as long as the
identity mapping Id(x) can be represented or approximated. Take sigmoid activation
function as an example. The sigmoid mapping is approximately the Id mapping near
origin, and thus, composing with a scaling before and another scaling afterwards, it can

Y. Li, X. Cheng and J. Lu / Commun. Comput. Phys., 28 (2020), pp. 1838-1885 1855

approximate Id mapping as well. Revising the operations in the construction of �= in Ap-
pendix B accordingly provides the Butter�y-net which has the same theoretical properties.
With sigmoid activation function, it allows even without doubling the number of chan-
nels. Using other types of activation function with universal approximation property, the
Fourier initialization scheme can be revised similarly.

3.3 Complexity analysis

One major advantage of the proposed Butter�y-net is the reduction of model complex-
ity and computational complexity. We now conduct a careful count on the number of
weights. Since we use complex embedding with ReLU, i.e., � �=�, each complex multi-
plicative weight is actually implemented by a 4�4 matrix and each bias is implemented
as a vector of length 4. Hence 4r is the actual number of channels. We conduct the count-
ing layer by layer based on the network description and Table 1. On the interpolation
(‘ = 0), there is only one convolutional kernel, which has 16r� N

2L �lter weights and 4r
bias weights. On the recursive (‘ = 1,��� ,Lt), there are min(2‘�1,2Lmin) non-mixing input
channels, min(2‘,2Lmin) non-mixing output channels, and the �lter size is 2. The number
of both input and output mixing channels are 4r. Hence there are min(2‘,2Lmin)�(4r)2 �2
�lter weights and min(2‘,2Lmin)�4r bias weights. On the switch layer (‘ = Lt), there are
min(2Lt ,2Lmin) non-mixing channels and 2Lx data. Since the connection is locally fully con-
nected layer, the overall number of multiplicative weights is min(2Lt ,2Lmin)�2Lx (4r)2 with
additional min(2Lt ,2Lmin)�2Lx 4r bias weights. On the recursive layer (‘=Lt+1,��� ,Lt+Lx),
it is a transpose of the previous recursive layer 2Lt�‘. The numbers of �lter weights
and bias weights are then 2L�‘ �(4r)2 �2 and 2L�‘ �4r. The last interpolation (‘ = L) is
similar as the interpolation (‘ = 0). The numbers of �lter weights and bias weights
are 4max(1, K

2L)(4r) and 4max(1, K
2L). In summary, the overall network complexity for

Butter�y-net is

N
2L 16r+

Lt

å
‘=1

min
�

2‘,
K

2Lx

�
(4r)2 �2+min(2L,K)(4r)2+

L

å
‘=Lt+1

2L�‘(4r)2 �2+max
�

1,
K
2L

�
16r

+4r+
Lt

å
‘=1

min
�

2‘,
K

2Lx

�
4r+min(2L,K)4r+

L

å
‘=Lt+1

2L�‘4r+max
�

1,
K
2L

�
4r

=O
�Nr

2L +LKr2
�

, (3.13)

where the �rst row is the number of multiplicative/�lter weights and the second row is
the number of bias weights.

Remark 3.1. We further derive a more precise upper bound for the number of weights in
Butter�y-net with an absolute constant under L=logN. Denote the expression in (3.13) as
nb. We have

nb �40r+Lt
K

2Lx
(32r2 +4r)+K(16r2 +4r)+2Lx (32r2 +4r)<90LKr2, (3.14)

1856 Y. Li, X. Cheng and J. Lu / Commun. Comput. Phys., 28 (2020), pp. 1838-1885

Table 2: Leading order network complexity for Butter�y-net and In�ated-Butter�y-net under two scenarios,

K � N�2L
and K =O(1),N�2L

. In both cases, we assume K � N and Lx � logK, i.e. L�logK � Lt � L. The
asymptotic regime is N !¥, and r denotes the number of interpolation points (size of mixing channels) which

does not change with N.

K � N �2L K =O(1), N �2L

BNet In�ated BNet BNet In�ated BNet

Interpolation (‘=0) r r r r

Recursion (‘� Lt) 2‘r2 22‘r2 K
2Lx

r2 K2

22Lx
r2

Switch (‘= Lt) 2Lr2 2Lr2 Kr2 Kr2

Recursion (‘� Lt +1) 2L�‘r2 22(L�‘)r2 2L�‘r2 22(L�‘)r2

Interpolation (‘= L) r r r r

Overall 2Lr2 22Ltr2 Lt
K

2Lx
r2 +Kr2 Lt

K2

22Lx
r2+Kr2

Lx =0 Nr2 N2r2 Kr2 logN K2r2 logN

Lx = 1
2 logK Nr2 Nr2

p
Kr2 logN+Kr2 Kr2 logN

where the last inequality adopts the assumption on r as in Theorem 2.1.

The number of parameters in the in�ated Butter�y-net, i.e., all channels are mixed, can
be derived in a similar way and the overall complexity is

N
2L 16r+

Lt

å
‘=1

min
�

2‘,
K

2Lx

�2
(4r)2 �2+min(2L,K)(4r)2

+
L

å
‘=Lt+1

22L�2‘(4r)2 �2+max
�

1,
K
2L

�
16r+4r+

Lt

å
‘=1

min
�

2‘,
K

2Lx

�
4r

+min(2L,K)4r+
L

å
‘=Lt+1

2L�‘4r+max
�

1,
K
2L

�
4r

=O
�Nr

2L +L
K2

22Lx
r2+22Lx r2

�
. (3.15)

In Table 2, we summarize the layer-wise complexity together with the overall complexity
for two special scenarios, K � N � 2L and K = O(1),N � 2L, for both Butter�y-net and
In�ated-Butter�y-net, where we use the notation A � B to denote that A

B ! c which is
an absolute strictly positive constant in the limit of N ! ¥. Recall that the number of
hierarchical layer L satis�es that K �2L.

When Butter�y-net is extended to d-dimension, we should partition both the time and
the frequency domains into 2d subdomains at each layer and use rd Chebyshev points
for interpolations. All above detailed derivations for complexity analysis can be updated
accordingly. The overall complexity remain the same as that in Table 2 with r being
replaced by rd.

Y. Li, X. Cheng and J. Lu / Commun. Comput. Phys., 28 (2020), pp. 1838-1885 1857

In addition to the network complexity, the overall computational cost for a evaluation
of the Butter�y-net and the in�ated Butter�y-net are O(N logN) and O(N logN+K2).

3.4 Matrix representation of Butter�y-net

This section aims to demonstrate the matrix representation of Butter�y-net, which is sim-
ilar to Butter�y factorization [32]. The matrix representation further explain the sparse
connectivity of channels and more importantly facilitates the proof in the analysis of ap-
proximation power in Section 4.

We �rst show the matrix representation of the interpolation convolutional layer and
the matrix representation of the Butter�y-net simply stacks the interpolation convolu-
tional layer together with a switch layer. Fig. 3(a) represents (3.2) when both g and f
are vectorized. If we permute the row ordering of the matrix, we would result blocks
of convolution matrix with the number of blocks being the size of the output channels.
Fig. 3(b) assumes that s = w and the matrix is further simpli�ed to be a block diagonal
matrix. According to the �gures, we note that when s= w, the transpose of the matrix is
a representation of a transposed convolutional layer with W replaced by WT.

Since the convolutional layer with mixing channel can already be represented as
Fig. 3, Butter�y-net stack interpolation convolutional layer together representing non-
mixing channel, which is equivalent to stack the matrix row-wise. We would explain
the matrix representation for each step of the Butter�y-net.

1. Interpolation (‘ = 0). The matrix representation is Fig. 3(b) with 2L diagonal blocks
and each block is W(0)

:,:,1 which is of size r�m. The resulting matrix is denoted as V.

2. Recursion (‘ = 1,��� ,Lt). The weight tensor W(‘),i
k,c,s can be reshaped as a matrix with

row indexed by k and column indexed by c and s, which is denoted as W(‘),i. For ‘�
Lmin the convolutional operator of mixing and non-mixing channels can be viewed
as the following matrices respectively,

H(‘)
bi/2c=

0

BBBBBBBB@

W(‘),2bi/2c

. . .
W(‘),2bi/2c

W(‘),2bi/2c+1

. . .
W(‘),2bi/2c+1

1

CCCCCCCCA

, and H(‘)=

0

B@

H(‘)
0

. . .
H(‘)

2‘�1�1

1

CA. (3.16)

For Lmin<‘�Lt the convolutional operator can be viewed as the following matrices
respectively,

H(‘)
i =

0

B
@

W(‘),i

. . .
W(‘),i

1

C
A, and H(‘) =

0

B
@

H(‘)
0

. . .
H(‘)

2Lmin�1

1

C
A. (3.17)

Y. Li, X. Cheng and J. Lu / Commun. Comput. Phys., 28 (2020), pp. 1838-1885 1859

4 Analysis of approximation power

The main result of function approximation using Butter�y-net is given in Section 4.1,
where the main Theorem, Theorem 4.2, relies on the Fourier kernel approximation re-
sult Corollary 4.1. The latter is established in Section 4.2, and the proof is in Section 4.3.

4.1 Approximation of network function

In this section, we �rst focus on approximating single-valued function f (~x), where
~x 2 RN , N is an integer. After showing the main result Theorem 4.2, we discuss on the
extension to other prediction functions, particularly dense predictions in U-net.

Let FN be the N-by-N unitary discrete Fourier matrix. Any vector ~x and its discrete
Fourier transform �x = FN~x obey k~xk2 = k �xk2. By normalizing argument, we assume that
~x lies in X , which is a subset of the 2-norm unit ball in RN . As a result, �x2 �X is also con-
tained in the 2-norm unit ball in CN . Suppose that ~x is statistically distributed according
to dP(x) on X . We denote the 2-norm ball of radius r in Cm as �Bm

r , and that in Rm as Bm
r .

We introduce the following assumption on f and X which, as shown in Theorem 4.2,
can be more ef�ciently represented using Butter�y-net.

Assumption 4.1. Consider approximating f under the p-norm of Lp(X ,dP), p 2 [1,¥].
There exists constants C2 >0, s>0, an interval IK = [K0,K0+K) for K � N, and a function
gK which maps from �BK

1.1 to R, such that the following three conditions hold.

(i) Let �xjIK denote retrieving entries of the vector �x with index in Ik,

k f (~x)�gK(�xjIK)kLp(X ,dP),~x2X <0.1,

and note �xjIK 2 �BK
1 since �x2 �BN

1 .

(ii) gK is C2-Lipschitz on �BK
1.1 with respect to the 2-norm, i.e.,

jgK(z)�gK(z0)j�C2kz�z0k2, 8z, z0 2 �BK
1.1.

Note that if we view gK as a real-input function taking 2K inputs, it also has Lips-
chitz constant C2 (with respect to the 2-norm in real space). Here C2 is uniformly for
all K.

(iii) For any 0 < # < 1, there is a multi-layer fully-connected network with number of
parameters

n f c � c(s,K)#�K/s
�

log
1
#

+1
�

, (4.1)

which gives a network mapping fK : �BK
1.1 ! R s.t. kfK(z)�gK(z)k¥,z2 �BK

1.1
< #, where

c(s,K) is a constant that depends on s and K.

1860 Y. Li, X. Cheng and J. Lu / Commun. Comput. Phys., 28 (2020), pp. 1838-1885

Remark 4.1. In Assumption 4.1 (i), the constant 0.1 is technical and can be any other
constant less than one. As will be shown in Theorem 4.2, the approximation result is
most useful when the residual norm in Assumption 4.1 (i) can be made small, say #�1,
and then this # will be used as the target # in both the Butter�y-net approximation and the
fully-connected network approximation. Note that if f is band-limited to begin with, the
residual can be made zero. For frequency decaying function, the residual can be made
arbitrarily small by increasing K. Detailed in the examples below.

Example 4.1. Consider the energy functional of the 1D Laplace operator with periodic
boundary condition

f (~x)= E(~x)= å
1�k�N/2

2
k2 j �xkj2, ~x2X = BN

1 ,

and dP is some distribution of ~x on X . For any K >0, setting IK =[1,K], and

gK(�xjIK)= å
1�jkj�K

2
k2 j �xkj

2 .

(i) We can verify that

k f (~x)�gK(�xjIK)kLp(X ,dP),~x2X <2�K�3/2,

which decays as K increases. This means that the residual can be made arbitrarily
close to 0 if K can be chosen suf�ciently large.

(ii) Due to that gK is a quadratic form, and k �xjIK k2 � 1, Assumption 4.1 (ii) is satis�ed
with C2 =2.2.

(iii) Viewing gK as a function taking 2K real input and de�ned on B2K
1.1, it is again a

quadratic form. Then by setting s = 2, or even higher positive number, the neural
network approximation theory in [50] provides the uniform approximation needed
in Assumption 4.1 (iii) by a network whose model complexity is bounded by (4.1),
where the constant c(s,K) depends on the space dimension 2K, the derivative order
s, and the Sobolev norm of the function gK in W s(B2K

1.1).

Example 4.2. Unlike the �rst example which makes use of the form of f , this example
mainly shifts assumptions on the data set. Suppose the data domain X consists of band-
limited data points with window length K,

X =f~x2 BN
1 j �xk =0 for k 62 IKg.

Then for a regular function f de�ned on BN
1.1, e.g., C2-Lipschitz and s-smooth, let K�1

be the discrete inverse Fourier transform from frequency window IK to X � RN , and
gK(z) = f (K�1z) for any z 2 �BK

1.1. Hence the difference in Assumption 4.1 (i) is zero and

Y. Li, X. Cheng and J. Lu / Commun. Comput. Phys., 28 (2020), pp. 1838-1885 1861

the regularity assumptions on gK can be inherited from that on f . Thus (ii) and (iii) in
Assumption 4.1 are also satis�ed.

In applications, if the input data vectors ~x are discretizations of regular continuous
signals, then they naturally have spectrum decay property and can be approximated by
band-limited data points. Hence the Assumption 4.1 also applies.

Remark 4.2. Our theory leaves the abstract approximation bound in Assumption 4.1 (iii)
and focuses on the approximation analysis of Butter�y-net, of which the key result is
Corollary 4.1. Generally, as long as a �nice� component gK, which is band-limited on
a Fourier window of length K and has suf�cient regularity, can be separated out from
f up to a small residual, the universal approximation theory of neural network gives
approximation of gK depending on its regularity, and this fully-connected network is
used on top of the Butter�y-net.

Theorem 4.2. Assume that the function f and X satisfy Assumption 4.1, and notations are the
same as therein. Then for any # satisfying

k f (~x)�gK(�xjIK)kLp(X ,dP),~x2X � #<0.1,

there exists a family of Butter�y-nets with Lx =0,��� ,logK, whose numbers of parameters are all
bounded by

nb �CK logN
�

log
1
#

+logN
�2

, C being an absolute constant,

and a fully connect network fK with number of parameters

n f c � c(s,K)#�K/s
�

log
1
#

+1
�

,

such that using any member of the family of Butter�y-net, denoting by B, gives

k f (~x)�fK(B(~x))kLp(X ,dP),~x2X � #(2+C2).

Remark 4.3. Theorem 4.2 holds for a family of Butter�y-nets with different Lxs, which
shows no difference in view of this approximation analysis. However, different Lxs
lead to Butter�y-net architectures with different number of parameters. Butter�y-net with
smaller Lx has more parameters (up to a logarithmic factor), hence achieves better post-
training accuracy, which is veri�ed in Section 5.2. Butter�y-net with Lx = 0 has the sim-
plest architecture consisting of only convolutional layers and fully-connect layers, which
is detailed in [49].

Remark 4.4. Since Butter�y-net can be embedded in In�ated-Butter�y-net, Theorem 4.2
also holds for a family of In�ated-Butter�y-net with Lx = 0,��� ,logK, whose numbers of
parameters are all bounded by

nb �C
�

K2

22Lx
logN+22Lx

��
log

1
#

+logN
�2

. (4.2)

1862 Y. Li, X. Cheng and J. Lu / Commun. Comput. Phys., 28 (2020), pp. 1838-1885

Notice the number of parameters �rst increases and then decrease as Lx varying from
0 to logK. The lightest In�ated-Butter�y-net is achieved when Lx = logK

2 . As shown in
[49], In�ated-Butter�y-net with Lx = 0 is a regular CNN. Hence, Theorem 4.2 gives an
approximation result for regular CNNs if Butter�y-net is replaced by In�ated-Butter�y-net
and the parameter number upper bound on nb is replaced by (4.2).

Remark 4.5. Theorem 4.2 can be extended to approximate functions of ~x with ~x being
a function discretized on higher dimensional grids. As been discussed around The-
orem 2.1, the key low-rank approximation can be generalized to higher dimensions if
high dimensional Chebyshev interpolations are applied. Following Section 3.2 and [33],
the architecture of multidimensional Butter�y factorization can be implemented using
high dimensional CNNs with/without sparse channel connections. And high dimen-
sional CNNs can be initialized to approximate high dimensional Fourier kernels. The
approximation bound, then, is similar to that in Theorem 4.3 with a modi�ed prefactor
depending on the dimensionality. Given a high dimensional version of Theorem 4.3 and
a high dimensional extension of Assumption 4.1, Theorem 4.2 can be extended to high
dimensional settings and viewed as an approximation upper bound for high dimensional
CNNs.

Proof. Under Assumption 4.1, for any ~x2X ,

j f (~x)�fK(B(~x))j� j f (~x)�gK(�xjIK)j+jgK(�xjIK)�gK(B(~x))j+jgK(B(~x))�fK(B(~x))j,
(4.3)

and by Corollary 4.1, there exists a family of Butter�y-nets satisfying the requirement and
for any B belonging to the family,

kB(~x)� �xjIK k2 < #<0.1, 8~x2X , (4.4)

due to that X � �BN
1 . Note that the K operator in Corollary 4.1 is de�ned for frequency

window, c.f. beginning of Section 4.2, and thus �xjIK equals K~x. Combined with that
�xjIK 2 �BK

1 , both �xjIK and B(~x) must lie in �BK
1.1 on which gK and fK are de�ned. We now

bound the three terms in (4.3) respectively.
The 2nd term: By that �xjIK ,B(~x)2 �BK

1.1, Assumption 4.1 (ii) gives that

jgK(�xjIK)�gK(B(~x))j�C2k �xjIK �B(~x)k2 <C2#,

where the second inequality uses (4.4). This pointwise upper bound leads to the p-norm
bound of this term to be C2# for all p.

The 3rd term: By the uniform approximation of gK on �BK
1.1 guaranteed by Assump-

tion 4.1 (iii), the fully-connected network fK satisfying the requirement exists, and point-
wisely,

jgK(B(~x))�fK(B(~x))j< #.

This proves that the p-norm bound of this term is smaller than # for all p.
The 1st term: the p-norm is at most # by assumption.
Putting together proves the p-norm upper bound in the claim.

Y. Li, X. Cheng and J. Lu / Commun. Comput. Phys., 28 (2020), pp. 1838-1885 1863

Remark 4.6. When the p-norm residual in Assumption 4.1 (i) can be made zero, which
includes the case of band-limited f and Example 4.2, the # in the Theorem 4.2 can be
chosen arbitrarily close to zero and the �nal approximation bound can be made #(1+C2).

Note that the above results demonstrate the power of Butter�y-net when K < N. As-
sume the function f and the frequency truncated gK has similar regularity level, which
is typically true as shown in both Example 4.1 and Example 4.2. Then a fully-connected
network approximating the original function f :X !R, requires a total number of param-
eter

n f c � c(s,N)#�N/s
�

log
1
#

+1
�

.

As a comparison, the overall number of parameter for Butter�y-net with a fully-connected
network is

nb+n f c �CK logN
�

log
1
#

+logN
�2

+c(s,K)#�K/s
�

log
1
#

+1
�

,

where the second term which involves #�K/s dominates the model complexity. The im-
provement from #�N/s to #�K/s is due to the feature extraction of truncated Fourier co-
ef�cients which are suitable for the class of functions as described in Assumption 4.1.
In other words, while N being the ambient dimensionality of the input data, K upper-
bounds the intrinsic complexity (effective dimension) of the regression problem f on the
data X .

Discussion on the dense prediction networks. The method of analyzing x-to-1 network
functions in this section can extend to the analysis of x-to-x function mappings, known as
dense prediction in deep learning literature. Typical deep convolutional networks for x-
to-x prediction include the U-net architecture [46], which consists of a module of multiple
convolutional layers, a bottleneck module with dense connections, and another module
of multiple conv-t layers, namely transpose convolutional layers. The corresponding net-
work architecture using Butter�y-net would be B-(fc layers)-BT where B denotes a mod-
ule of Butter�y-net layers, and BT is again a Butter�y-net module due to the symmetric
role of time of frequency in the model. Extending the approximation theory, such U-net
which replaces traditional convolutional layers by Butter�y-net layers can provably ap-
proximate operators in the form of F�1�s�F , where F is Fourier transform operator,
and s is some non-linear operator (not necessarily entry-wise). The covered family of
operators involve low/high-pass �ltering, de-convolution, among others, in signal pro-
cessing.

Another example of dense prediction mapping is the general Laplace operator (with
variable coef�cient) in physics which can be represented as åiAiKDiF , where i sums
over a small number of terms corresponding to a low-rank decomposition of the am-
plitude function, Ais and Dis are diagonal matrices, and K is a smooth Fourier integral
operator (FIO) [10, 15]. As a heads-up, a parallel reading of the proof of Theorem 4.3

1864 Y. Li, X. Cheng and J. Lu / Commun. Comput. Phys., 28 (2020), pp. 1838-1885

and [10, 31] reveals that similar theorem can be provided for smooth FIOs, i.e., e�2p�F(x,t)

with smooth F(x,t) satisfying homogeneity condition of degree 1. Such an extension of
Theorem 4.3 will give error control of Butter�y-net approximation of the operator K, and
Ais, Dis can be represented by fully-connected networks, possibly coordinate-separated
and shallow. The approximation to smooth FIOs will enable the usages of Butter�y-net to
represent a large class of elliptic operators.

4.2 Approximation of the Fourier kernel

In this section, we analyze the approximation power of the Butter�y-net on discrete
Fourier kernel, whose matrix entry is de�ned as Kij = e�2p�xi�tj where tj and xi are uni-
formly distributed on [0,1) and [k0,k0+K) (K�N) respectively. The analysis result shows
that though Butter�y-net by construction has very low complexity as the number of pa-
rameters is on the order of the input/output data size, it exhibits full approximation
power in terms of function representations.

Theorem 4.3. Let N denote the size of the input and K denote the size of the output in the
Butter�y-net. L and r are two parameters such that peK � r2min(L,logK). L is the depth of the
Butter�y-net and r is the size of mixing channels. There exists a parametrized Butter�y-net,
B(�), approximating the discrete Fourier transform such that for any bounded input vector ~x, the
error of the output of the Butter�y-net satis�es that for any p2 [1,¥],

kK~x�B(~x)kp �m
1
p rLt(1� 1

p)+Lx
1
p +1(2Lr)L+3 K(pe)r

rr�1 k~xkp , (4.5)

where m=min(1,K/2L) and Lr = 2
p lnr+1 is the Lebesgue constant.

If L� logK, then the error also satis�es

kK~x�B(~x)kp �Cr,K

�
Lr

2r�2

�L

rLt(1� 1
p)+Lx

1
p k~xkp , (4.6)

where Cr,K =(2Lr)3 (peK)r

(2r)r�1 is a constant depending on r and K, and independent of L.

The proof of Theorem 4.3 is constructive. We �rst �ll the Butter�y-net with a speci�c
set of parameters (Butter�y initialization) based on the complementary low-rank prop-
erty of the discrete Fourier kernel (see Theorem 2.1). Using the matrix representation
of Butter�y-net, 1-norm and ¥-norm of each matrix can be bounded. Combined with
the low-rank approximation error, we derive the 1-norm and ¥-norm upper bound for
Butter�y-net. Applying Riese-Thorin interpolation theorem, we reach to the conclusion
of Theorem 4.3 for general norm index p. Section 4.3 provides the detailed proof of the
theorem.

Previously, in the context of fast algorithms, Kunis and Melzer [29] analyzed the ap-
proximations of a simpli�ed Butter�y scheme and Demanet et al. [16] analyzed general
Butter�y scheme under different error measures on the input and output. While as a side

Y. Li, X. Cheng and J. Lu / Commun. Comput. Phys., 28 (2020), pp. 1838-1885 1865

product of our proof, we also obtain the error estimate of the matrix approximation of
the general Butter�y schemes in terms of matrix norms.

For a problem with �xed input and output size, we can tune two parameters r and
L to reach desired accuracy. As r increases, which corresponds the increase of mixing
channel size in each layer, the approximation error decays mainly as r�r. Interestingly,
when L increases, which corresponds to increase the depth of the Butter�y-net, the error
bound decays exponentially in L.

Combining Theorem 4.3 and the parameter number estimation (3.14), we derive the
network complexity analysis for Butter�y-net under a given approximation accuracy as
follows.

Corollary 4.1. Let N denote the size of the input and K denote the size of the output in the
Butter�y-net. For any 0 < # < 1, there exists a family of Butter�y-nets with Lx = 0,1,��� ,logK,
whose numbers of parameters are all bounded by

nb �CK logN
�

log
1
#

+logN
�2

, (4.7)

where C<(2pe)2�90 is an absolute constant, and for any B denoting a Butter�y-net in the family,

kK~x�B(~x)k2 < #k~xk2 , (4.8)

for any input vector ~x.

Proof. Comparing the statements in Corollary 4.1 and Theorem 4.3, we aim to �nd a r
such that

T =
r

min(1,
K
2L)

p
rL+2

�
2+

4
p

lnr
�L+3 K(pe)r

rr�1 < #. (4.9)

In this proof, we assume that L= logN. Since we focus on the approximation error under
p = 2 norm, the prefactor T is then independent of Lx and r becomes the only tunable
parameter in Butter�y-net. The following proof holds for all 0� Lx � logK.

When r�a(logN+log 1
), we have

T �

2
p

r
�
2+ 4

p lnr
�

� r
pe
�a

!L
r2�2+ 4

p lnr
�3

� r
pe
�a�1

1
� r

pe
�log 1

#
. (4.10)

For both the �rst and second term in (4.10) the denominator grows faster in r than the
numerator. When a = 2pe, both the �rst and second terms are smaller than one for all
r�a �. Then we have when r�2pe(logN+log 1

),

T <
1

� r
pe
�log 1

#
<

1

2log 1
#

= #. (4.11)

�Both inequalities are numerically validated as well.

1866 Y. Li, X. Cheng and J. Lu / Commun. Comput. Phys., 28 (2020), pp. 1838-1885

Based on the network complexity counting in (3.14), there exists an absolute constant
C0 =90, and r such that the number of parameters in Butter�y-net is

nb �C0K logNr2. (4.12)

Substituting the conditions for r into (4.12), we conclude that there exists a Butter�y-net
with the number of parameters bounded by

nb �CK logN
�

log
1
#

+logN
�2

, C � (2pe)2C0, (4.13)

such that T < #, which proves the theorem.

4.3 Proof of Theorem 4.3

This section �rst provides a few lemmas and their proof bounding each sparse matrix in
(3.20). And then Theorem 4.3 is proved in detail.

Lemma 4.1. Let fzigr
i=1 be r Chebyshev points and Lk(x) be the Lagrange polynomial of order

r. For any r, the Lebesgue constant Lr is bounded as

Lr = max
�1�x�1

r

å
i=1

jLi(x)j�
2
p

lnr+1.

Lemma 4.1 is a standard result of Chebyshev interpolation and the proof can be found
in [45].

Corollary 4.2. Let fzigr
i=1 be r Chebyshev points and Lk(x) be the Lagrange polynomial of order

r. For any r and i� r,

max
�1�x�1

jLi(x)j�
2
p

lnr+1.

Corollary 4.2 is an immediate result of Lemma 4.1.

Lemma 4.2. Let U be the block diagonal matrix de�ned at interpolation layer (‘= L), then

kUk1 �m
�

2
p

lnr+1
�

and kUk¥ �
2
p

lnr+1,

where r is the number of Chebyshev points and m=K/2L.

Proof. U is a block diagonal matrix with block Ui. Ui are the same m�r with entry
e�2p�(flxp�xk)�t0Lk(flxp) for flxp and xk being uniform and Chebyshev points in AL

i . By the
de�nition of matrix 1-norm, we have

kUk1 =kU1k1 � max
xk2AL

1
å

flxp2AL
1

���e�2p�(flxp�xk)�t0Lk(flxp)
����m

�
2
p

lnr+1
�

. (4.14)

Y. Li, X. Cheng and J. Lu / Commun. Comput. Phys., 28 (2020), pp. 1838-1885 1867

By the de�nition of matrix ¥-norm, we have

kUk¥ =kU1k¥ � max
flxp2AL

1
å

xk2AL
1

���e�2p�(flxp�xk)�t0Lk(flxp)
����

2
p

lnr+1. (4.15)

This completes the proof.

Lemma 4.3. Let M be the block matrix de�ned at switch layer, then

kMk1 � r and kMk¥ � r,

where r is the number of Chebyshev points.

Proof. Based on the structure of M and the de�nition of matrix 1-norm, we have

kMk1 �max
j

max
i

Wj,i

1 =max
j,i

max

t
B

Lx
j

k

å
x

A
Lt
i

k0

������
e�2p�x

A
Lt
i

k0 �t
B

Lx
j

k

������
= r. (4.16)

Based on the structure of M and the de�nition of matrix ¥-norm, we have

kMk¥ �max
j

max
i

Wj,i

¥ =max
j,i

max
t
A

Lt
i

k

å
t
B

Lx
j

k

������
e�2p�x

A
Lt
i

k0 �t
B

Lx
j

k

������
= r. (4.17)

This completes the proof.

Lemma 4.4. Let H(‘) be the block diagonal matrix de�ned at recursion layer ‘=1,��� ,Lt, then
H(‘)

1
�2
�

2
p

lnr+1
�

,

where r is the number of Chebyshev points.

Proof. The building block of H(‘) is W(‘)
i , whose 1-norm is bounded as

W(‘)
i

1
� max

t2BL�‘
1

å
t
BL�‘

1
k

�����
e�2p�x

A‘
i

0 �(t�t
BL�‘

1
k)Lk(t)

�����
�

2
p

lnr+1. (4.18)

For two ranges of ‘, i.e., ‘� Lmin and Lmin <‘� Lt, we have

H‘

1
=max

i

H(‘)
i

1
�2
W(‘)

i

1
�2
�

2
p

lnr+1
�

. (4.19)

This completes the proof.

1868 Y. Li, X. Cheng and J. Lu / Commun. Comput. Phys., 28 (2020), pp. 1838-1885

Lemma 4.5. Let G(‘) be the block diagonal matrix de�ned at recursion layer ‘=Lt+1,��� ,Lt+Lx ,
then G(‘)

1
�2r

�
2
p

lnr+1
�

,

where r is the number of Chebyshev points.

Proof. Based on the structure of G(‘) and the de�nition of matrix 1-norm, we have
G‘

1
=max

j

G(‘)
j

1
�max

j

W(‘)
j

1

�max
j

max
k

0

BB@ å
x

A‘�1
1

k0

����Lk(xA‘�1
1

k0)
����+ å

x
A‘�1

2
k0

����Lk(xA‘�1
2

k0)
����

1

CCA�2r
�

2
p

lnr+1
�

. (4.20)

This completes the proof.

Lemma 4.6. Let H(‘) be the block diagonal matrix de�ned at recursion layer ‘=1,��� ,Lt, then

H(‘)

¥
�2r

�
2
p

lnr+1
�

,

where r is the number of Chebyshev points.

Lemma 4.7. Let G(‘) be the block diagonal matrix de�ned at recursion layer ‘=Lt+1,��� ,Lt+Lx ,
then G(‘)

¥

�2
�

2
p

lnr+1
�

,

where r is the number of Chebyshev points.

The proofs of Lemma 4.6 and Lemma 4.7 follow that of Lemma 4.5 and Lemma 4.4
respectively.

Proof of Theorem 4.3. Since all bias weights are initialized as zero, and extensive assign is
applied together with ReLU activation, Butter�y-net with Butter�y initialization is equiv-
alent to multiplying the matrices in matrix representation together, i.e.,

B(x)=UG(L) �G(Lt+1)MH(Lt) �H(1)Vx. (4.21)

We then write the exact matrix product with error matrices E(‘),

K= E(L+1)+U
h
E(L)+G(L)

h
���+G(Lt+1)

h
E(S)+M

h
E(Lt)+H(Lt)

h
���+H(1)

h
E(0)+V

iiiiii
.

(4.22)

Y. Li, X. Cheng and J. Lu / Commun. Comput. Phys., 28 (2020), pp. 1838-1885 1869

Then, following properties of matrix p-norm, we have

#p =
K�UG(L) ���G(Lt+1)MH(Lt) ���H(1)V

p

�
E(L+1)

p
+
UE(L)

p
+���+

UG(L) ���G(Lt+1)E(S)

p
+���

+
UG(L) ���G(Lt+1)MH(Lt) ���H(1)E(0)

p

�
E(L+1)

p
+kUkp

E(L)

p
+���+kUkp

L

Õ
‘=Lt+1

G(‘)

p

!E(S)

p
+���

+kUkp

L

Õ
‘=L1+1

G(‘)

p

!

kMkp

Lt

Õ
‘=1

H(‘)

p

!E(0)

p
, (4.23)

for 1� p�¥.
When matrix 1-norm is used, we adopt Lemma 4.2, Lemma 4.3, Lemma 4.4, and

Lemma 4.5 to bound #1 as

#1 �d1

1+mLr

Lx

å
‘=0

(2rLr)‘+mrLr(2rLr)Lx
Lt

å
‘=0

(2Lr)‘

!

�mrLx+1(2Lr)L+2d1, (4.24)

where the second inequality adopt the fact that r>1 and Lr= 2
p lnr+1()>1, d1 is a uniform

upper bound for kE(‘)k1. Theorem 2.1 provides an upper bound for each entry of E(‘).
Recalling the vector length (]fig�]fjg�r) and product of domain lengths from Table 1, the
uniform upper bound for the 1-norm follows,

d1 =max
‘

E(‘)
1

1
�peK(1+Lr)

�
peK

r2Lx+Lmin+1

�r�1
, (4.25)

where the assumption peK � r2min(logK,L) is applied.
When matrix ¥-norm is used, we adopt Lemma 4.2, Lemma 4.3, Lemma 4.6, and

Lemma 4.7 to bound #¥ as

#¥ �d¥

1+Lr

Lx

å
‘=0

(2Lr)‘+rLr(2Lr)Lx
Lt

å
‘=0

(2rLr)‘

!

� rLt+1(2Lr)L+2d¥, (4.26)

where d¥ is a uniform upper bound for
E(‘)

¥

and obeys the same upper bound as d1.
Applying Riesz-Thorin interpolation theorem together with (4.24) and (4.26), we ob-

tain the error bound under the matrix p-norm

#p �m
1
p rLt(1� 1

p)+Lx
1
p +1(2Lr)L+3 K(pe)r

rr�1 , (4.27)

for any 1� p�¥.

1870 Y. Li, X. Cheng and J. Lu / Commun. Comput. Phys., 28 (2020), pp. 1838-1885

If we further assume L � logK, then 2Lx+Lmin =2L and the matrix p-norm error bound
can be rederived in terms of L, i.e.,

#p �Cr,K

�
Lr

2r�2

�L
rLt(1� 1

p)+Lx
1
p , (4.28)

where Cr,K =(2Lr)3 (peK)r

(2r)r�1 is a constant depending on r and K, and independent of L.

For any bounded vector ~f , Theorem 4.3 is the direct result of (4.27) and (4.28).

5 Numerical results

We present four numerical experiments to demonstrate the approximation power with or
without training for Butter�y-net and In�ated-Butter�y-net. The �rst numerical experiment
shows that the approximation error without training of an Butter�y initialized Butter�y-
net decays exponentially as the increases of the network depth L, which veri�es Theo-
rem 4.3. Then, through the second experiment, we show that the training of Butter�y-net
and In�ated-Butter�y-net further re�ne the approximation error. The approximation er-
ror after training depends on both the properties of the function and the dataset. In
the third experiment, we apply both Butter�y-nets and In�ated-Butter�y-nets to testing
datasets with different distribution comparing to the training datasets and compare the
transfer learning capabilities. In the last experiment, Butter�y-net and In�ated-Butter�y-net
with additional task layers, one with single fully connect layer and another with square
layer, are tested and compared in the approximation of the energy functionals of Pois-
son’s equation. All algorithms are implemented using Tensor�ow 2.1.0 [1] and can be
found on the authors’ homepages.

5.1 Approximation power without training

The �rst numerical experiment in this section aims to verify the exponential decay of the
approximation error of the Butter�y-net as the depth L increases. We construct a Butter�y-
net to approximate the discrete Fourier kernel with �xed number of Chebyshev points,
r=8. The Butter�y-net is �lled with Butter�y initialization weights. The input vector in this
example is of size N =1024 and various output vector sizes are tested. The output vector
represents integer frequency of the input function in the frequency domain [0,K). The
approximation error of the Butter�y-net is measured against the dense discrete Fourier
kernel matrix and relative matrix p-norm error is reported, ep = kK�Bkp/kKkp, where B
denotes Butter�y-net.

Table 3 shows for both choices of K, the relative approximation errors measured in
1-norm, 2-norm, and ¥-norm decay exponentially as L increases and stay constant for
different Lx . The decay factors for different K remain similar, while the prefactor is larger
for large K. All of these observations agree with the error bound in Theorem 4.3.

Y. Li, X. Cheng and J. Lu / Commun. Comput. Phys., 28 (2020), pp. 1838-1885 1871

Table 3: Approximation accuracy of the Fourier kernel by the Butter�y-net. The input vector size is N =1024,
the number of Chebyshev points is r =8, and frequency domain is [0,K).

K =64 K =256
L Lx e1 e2 e¥ L Lx e1 e2 e¥

4
1 2.06e�1 2.46e�1 2.56e�1

6
1 2.52e�1 3.40e�1 2.82e�1

2 2.02e�1 2.60e�1 2.66e�1 2 2.51e�1 3.45e�1 2.89e�1
3 1.90e�1 2.89e�1 2.72e�1 3 2.46e�1 3.60e�1 2.95e�1

5
1 1.79e�3 2.56e�3 2.31e�3

7
1 2.03e�3 3.40e�3 2.44e�3

2 1.69e�3 2.32e�3 1.84e�3 2 1.97e�3 3.33e�3 2.01e�3
3 1.61e�3 2.16e�3 1.94e�3 3 1.91e�3 3.15e�3 2.11e�3

6
1 9.21e�6 1.30e�5 1.94e�5

8
1 1.15e�5 2.01e�5 2.00e�5

2 8.90e�6 1.33e�5 1.76e�5 2 1.13e�5 2.04e�5 1.82e�5
3 8.65e�6 1.49e�5 1.70e�5 3 1.10e�5 2.07e�5 1.77e�5

5.2 Approximation power after training

The second numerical experiment in this section aims to demonstrate the approximation
power after training of Butter�y-net.

Dataset setup. Both the training and testing datasets are generated as follows. We �rst
generate an array of N random complex number in the frequency domain with each
number sampled uniformly from [�1,1). Then, we multiply the array by a Gaussian
function centered at Gcenter and width Gwidth (the standard deviation of the Gaussian
function). The input data ~x is then the real part of the inverse discrete Fourier transform
of the array. Given a frequency window [k0,k0+K), the output data is the discrete Fourier
transform of ~x restricted to the frequency window.

We perform numerical results on four groups of datasets as shown in Table 4 with
their short names. Notice that DFT-Lfreq and DFT-Hfreq have the same input data dis-
tribution and the corresponding widths are very large. Hence the input data of these
two groups are close to white noise. However, DFTSmooth-Lfreq and DFTSmooth-Hfreq
have input data generated with Gaussian centered at 0 and 256 with small width 10. The
input data is then close to band limited signal around the given frequency window, and
in other words, data in dimension N actually lie on a low-dimensional subspace of di-
mension about 6Gwidth =60. In Appendix C, we include one instance for each datasets in
Table 4.

Training and evaluation setup. All Butter�y-nets and In�ated-Butter�y-nets with differ-
ent initializations and frequency windows are trained under the in�nity data setting, i.e.,
training data is randomly generated on the �y. The input data length is N = 1024, the
batch size is 256, the maximum number of iteration is 50,000, and ADAM optimizer is
used with an exponentially decay learning rate. The initial learning rate is 10�3 and 10�4

1872 Y. Li, X. Cheng and J. Lu / Commun. Comput. Phys., 28 (2020), pp. 1838-1885

Table 4: Datasets setups and their short names.

Short Name Gcenter Gwidth Freq Window
DFT-Lfreq 0 500 [0,128)
DFT-Hfreq 0 500 [256,384)
DFTSmooth-Lfreq 0 10 [0,128)
DFTSmooth-Hfreq 256 10 [256,384)

Table 5: Numerical results of Butter�y-nets (BNet) and In�ated-Butter�y-nets (IBNet) on DFT-Lfreq, DFT-

Hfreq, DFTSmooth-Lfreq, and DFTSmooth-Hfreq datasets. Pre�x initialization refers to the Butter�y initial-

ization de�ned in Section 3. Pre-training and post-training relative errors are reported for each dataset. Both

Butter�y-net and In�ated-Butter�y-net use 16 mixing channels (r =4) and L=8 layers.

DFT-Lfreq DFT-Hfreq DFTSmooth-Lfreq DFTSmooth-Hfreq

Lx

Neural
Network Initial

Num
Paras

Pre
Train

Post
Train

Pre
Train

Post
Train

Pre
Train

Post
Train

Pre
Train

Post
Train

1
BNet

pre�x 136304 1.9e�2 1.6e�4 1.9e�2 2.0e�4 1.9e�2 1.2e�5 2.0e�2 3.0e�5
random 136304 1.0e�0 1.7e�2 1.0e�0 2.0e�2 1.0e�0 8.8e�3 1.0e�0 1.3e�2

IBNet
pre�x 3533936 1.9e�2 5.5e�5 1.9e�2 6.5e�5 1.9e�2 1.5e�4 1.9e�2 8.5e�5

random 3533936 1.0e�0 6.9e�1 1.0e�0 6.1e�1 1.0e�0 3.2e�1 1.0e�0 2.3e�1

2
BNet

pre�x 87728 1.9e�2 8.4e�4 2.0e�2 9.7e�4 2.0e�2 1.4e�4 2.0e�2 4.9e�4
random 87728 1.0e�0 8.2e�2 1.0e�0 9.1e�2 1.0e�0 1.5e�2 1.0e�0 2.8e�2

IBNet
pre�x 915120 1.9e�2 3.0e�4 1.9e�2 4.2e�4 2.0e�2 5.1e�5 2.0e�2 1.6e�4

random 915120 1.0e�0 5.6e�1 1.0e�0 5.8e�1 1.0e�0 1.6e�1 1.0e�0 1.6e�1

3
BNet

pre�x 66608 2.2e�2 1.3e�3 2.2e�2 1.4e�3 2.2e�2 4.1e�4 2.2e�2 6.3e�4
random 66608 1.0e�0 9.4e�2 1.0e�0 9.9e�2 1.0e�0 1.6e�2 1.0e�0 3.4e�2

IBNet
pre�x 275504 2.2e�2 1.1e�3 2.2e�2 1.2e�3 2.2e�2 1.7e�4 2.2e�2 2.4e�4

random 275504 1.0e�0 2.1e�1 1.0e�0 2.7e�1 1.0e�0 3.1e�2 1.0e�0 6.3e�2

for random initialized neural networks and Butter�y initialized ones respectively. The
decay steps and the decay rate are 100 and 0.985. The maximum number of iteration is
suf�cient for the convergence of relative errors in all settings (see Appendix D for exam-
ples of convergence behaviors). The loss function is de�ned as

‘(f~xi,~yig)=å
i

kN (~xi)�~yik
2
2 , (5.1)

where~yi is the output data and N denotes a neural network. Relative errors are reported
for comparison. In the following, the pre-training relative error is evaluated on the �rst
batch and the post-training relative error is evaluated on a testing data of size 1000. De-
fault values are used for other unspeci�ed hyper parameters.

Results. Table 5 reports the result on all four datasets. Fig. 4 further illustrates the post-
training relative errors against Lx , where Lx indicates the position of the switch layer. We
summarize the experimental observations as follows.

Y. Li, X. Cheng and J. Lu / Commun. Comput. Phys., 28 (2020), pp. 1838-1885 1873

(a) DFT-Lfreq (b) DFT-Hfreq

(c) DFTSmooth-Lfreq (d) DFTSmooth-Hfreq

Figure 4: Post-training relative error against Lx for all datasets. Lx indicates the position of the switch layer.

All four �gures share the same legend as (a).

(1) (Weight initialization, random v.s. pre�x) In all cases, training from Butter�y initial-
ization signi�cantly outperforms training from random initialization by two to three
digits. In almost all cases, the post-training relative errors of the randomly initialized
networks are not even as accurate as the pre-training relative error of the Butter�y
initialized counterparts.

(2) (Channel sparsity, Butter�y-net v.s. In�ated-Butter�y-net) Given a �xed Lx , Butter�y-net
has much less parameters than In�ated-Butter�y-net. While, their post-training rela-
tive errors stay at a similar level. For these datasets, channel sparsi�cation reduces
the number of parameters without loss much post-training accuracy.

(3) (In�uence of datasets) Given the same input data and different output frequency
windows, as in DFT-Lfreq and DFT-Hfreq, the post-training relative errors of high
frequency output are slightly less accurate than their low-frequency counterparts.

1874 Y. Li, X. Cheng and J. Lu / Commun. Comput. Phys., 28 (2020), pp. 1838-1885

The impact of output frequency window on the training performance is limited.
Given the same output frequency window and different input data, i.e., DFT-Lfreq
v.s. DFTSmooth-Lfreq, and DFT-Hfreq v.s. DFTSmooth-Hfreq, the post-training rel-
ative errors on datasets with smoother input data are half digit to one digit more
accurate than that on datasets with less smooth input data.

(4) (Position of switch layer, Lx) The number of parameters increases as Lx decreases for
both Butter�y-net and In�ated-Butter�y-net. In general, the post-training relative error
increases as Lx increases for all Butter�y-net results. However, for In�ated-Butter�y-net
with random initialization, the post-training relative error decreases as Lx increases
on all datasets.

We further give a discussion on the above results. The comparison of random ini-
tialization and Butter�y initialization indicates that the trainings reach two different local
minima. The relative error associated with Butter�y initialization is much smaller. Nu-
merically, we also found that if we set the learning rate for Butter�y initialized training
to be large then the training loss �rst increases and then converges to a number worse
than the results given in the Table 5. Hence, we conjecture that the energy landscape of
this task is nasty and the Butter�y initialization lies in a narrow but deep well. Training
from Butter�y initialization with small learning rate achieves the local minima within this
narrow but deep well. Regarding the in�uence of datasets, the intrinsic dimensionality
of the input data plays a crucial role in training. If no guidance of feature selection is
provided on an intrinsically high-dimensional data, e.g., In�ated-Butter�y-net with Lx =1
and random initialization applied to DFT-Lfreq, the training fails to learn useful infor-
mation. Adding more guidance, either re�ning network structure (increasing Lx , adding
channel sparsi�cation) or providing Butter�y initialization, helps training and achieves
lower post-training relative error. However, if the intrinsic dimension of the input data is
lowered, the training learns more information and achieves lower relative error. Provid-
ing extra guidance further helps training. For the position of switch layer, we can further
decrease Lx to zero and end up with the neural network proposed in [49]. We empha-
size that when Lx =0, the In�ated-Butter�y-net is indeed a regular CNN. More numerical
results and connections between In�ated-Butter�y-net and regular CNN refer to [49].

5.3 Comparison to CNN and transfer learning

This numerical experiment is to compare the Butter�y-net and In�ated-Butter�y-net on
their transfer learning capability. We adopt the neural networks trained on DFTSmooth-
Lfreq in previous section here. A sequence of testing datasets are generated in the same
way as in previous section with Gcenter = 0,2,��� ,44 and Gwidth = 10. Each testing dataset
contains 1000 samples.

Fig. 5 shows the means and standard deviations of the transferred testing relative
errors of neural networks with Lx =2 and Lx =3. For every transferred testing, the stan-
dard deviation is orders of magnitude smaller than the corresponding mean. Hence the

Y. Li, X. Cheng and J. Lu / Commun. Comput. Phys., 28 (2020), pp. 1838-1885 1875

(a) Lx =2 (b) Lx =3

Figure 5: Mean and standard deviation for testing relative errors of Butter�y-net and In�ated-Butter�y-net on

testing datasets with various Gcenter=0,2,��� ,44 and Gwidth=10. All networks are trained on DFTSmooth-Lfreq

dataset (Gcenter =0 and Gwidth =10).

variation of the testing relative error for each setting is relatively small. Regarding the
transfer learning capabilities, all randomly initialized networks quick loss accuracy as
the testing dataset shifted away from the training dataset. While, Butter�y initialized neu-
ral networks still preserve reasonable level of accuracy. Further, comparing Butter�y-net
and In�ated-Butter�y-net both with Butter�y initialization, In�ated-Butter�y-net achieves
lower testing relative error when the testing dataset has signi�cant overlap with the
training dataset. However, when the overlap reduces, the testing relative error of In�ated-
Butter�y-net increase faster than that of Butter�y-net. Hence we conclude that Butter�y-net
has better generalizability than that of In�ated-Butter�y-net. Further, comparing the case
of Lx =2 and Lx =3, we notice that the crossover of two testing relative error curves comes
later in Lx =3. This is because that the In�ated-Butter�y-net with Lx =3 has much less num-
ber of parameters than that of In�ated-Butter�y-net with Lx = 2, hence is less adapted to
training dataset after training.

5.4 General function approximation

The last numerical example aims to construct an approximation of the energy functional
of 1D Poisson’s equation and another analog functional for high frequency input data,
both of which correspond directly to the approximation power in Section 4.1 in repre-
senting general functions.

Functional setup. For a Poisson’s equation Du(t) = x(t) with periodic boundary condi-
tion, the energy functional of Poisson’s equation is de�ned as the negative inner product
of u and x, which can also be approximated by a quadratic form of the leading low-

1876 Y. Li, X. Cheng and J. Lu / Commun. Comput. Phys., 28 (2020), pp. 1838-1885

frequency Fourier components,

E1(x)=�hx,ui� å
k2(�K,K)

1
jkj2

jbxkj
2 = å

k2[1,K)

2
jkj2

jbxkj
2 , (5.2)

where bxk is the Fourier component of x at frequency k and the last equality comes from
the assumption of real input x. If the input function x is a band limited function within
the frequency window, (�K,K), then equality is achieved in (5.2). The other analogy
functional for input data x is de�ned as

E2(x)= å
k2(K0,K0+K)

2
jk�K0j2

jbxkj
2 . (5.3)

Throughout this section, K0 is 256 and K is 128. The input data is generated in the same
way as that in Section 5.2. The centers of Gaussian are Gcenter =0 and Gcenter =256 for E1
and E2 respectively. The widths of the Gaussian for both functionals are Gwidth =30.

Neural network setup. Task layers are attached to Butter�y-net and In�ated-Butter�y-net.
We have two different task layers, namely square-sum-layer and dense-dense-layer. The
square-sum-layer �rst squares all output of the previous layers in Butter�y-net or In�ated-
Butter�y-net, then multiplies each squared value by a weight, and �nally sums them to-
gether. This is equivalent to square the output and then connect a single dense layer with
one output unit. The square-sum-layer is able to exactly represent both functionals, (5.2)
and (5.3) if the weights of the dense layer is properly initialized. The dense-dense-layer
attaches a dense layer with 256 output units with both bias and ReLU activation function
enabled. Then another dense layer with one output unit is attached afterwards. Both
functionals can only be approximated by the dense-dense-layer.

Training and evaluation setup. All Butter�y-nets and In�ated-Butter�y-nets with differ-
ent initializations are trained under the in�nity data setting. The input data length is
N = 1024, the batch size is 256, the maximum number of iteration is 50,000, and ADAM
optimizer is used with an exponentially decay learning rate. The initial learning rate is
10�4 for Butter�y initialized networks with square-sum-layer, and is 10�3 for all other
settings. The decay steps and the decay rate are 100 and 0.985 respectively. Again, the
maximum number of iteration is suf�cient for the convergence of relative errors in all
settings. The loss function is de�ned as

‘(f~xig)=å
i

jN (~xi)�E(~xi)j
2 , (5.4)

for E being either E1 or E2. Relative errors are reported for comparison. The testing data
is of size 1000. Default values are used for other unspeci�ed hyper parameters.

Result. Table 6 show the results for functional (5.2) and (5.3). The comparison of the
number of parameters for Butter�y-net/In�ated-Butter�y-net is the same as that in Sec-
tion 5.2, while the number of parameters in dense-dense-layer is much larger than that

Y. Li, X. Cheng and J. Lu / Commun. Comput. Phys., 28 (2020), pp. 1838-1885 1877

Table 6: Numerical results of Butter�y-nets and In�ated-Butter�y-nets with various task layers for functional

(5.2) and (5.3). Pre-training and post-training relative errors are reported for each functional. All neural networks

use 16 mixing channels and L=8 layers.

Task Layer Lx
Neural

Network Initial
Num Paras Functional E1 Functional E2

BNet/IBNet Task Pre Train Post Train Pre Train Post Train

Square-sum-layer

1
BNet

pre�x 136304 256 1.80e�2 2.35e�5 1.84e�2 3.01e�5
random 136304 256 1.00e�0 7.62e�3 1.00e�0 1.85e�2

IBNet
pre�x 3533936 256 1.69e�2 1.78e�4 1.80e�2 1.92e�4

random 3533936 256 1.00e�0 5.80e�3 1.00e�0 9.48e�3

2
BNet

pre�x 87728 256 1.79e�2 4.36e�5 1.72e�2 5.84e�5
random 87728 256 1.00e�0 9.62e�3 1.00e�0 1.74e�2

IBNet
pre�x 915120 256 1.78e�2 6.33e�5 1.66e�2 7.30e�5

random 915120 256 1.00e�0 8.71e�3 1.00e�0 1.02e�2

3
BNet

pre�x 66608 256 1.50e�2 9.51e�5 1.55e�2 2.27e�4
random 66608 256 1.00e�0 1.46e�2 1.00e�0 4.04e�2

IBNet
pre�x 275504 256 1.59e�2 5.22e�5 1.69e�2 1.17e�4

random 275504 256 1.00e�0 1.15e�2 1.00e�0 2.38e�2

Dense-dense-layer

1
BNet

pre�x 136304 66048 1.00e�0 7.44e�3 9.99e�1 9.30e�3
random 136304 66048 1.00e�0 1.27e�2 1.00e�0 2.26e�2

IBNet
pre�x 3533936 66048 9.99e�1 4.11e�3 1.00e�0 5.84e�3

random 3533936 66048 1.00e�0 7.67e�3 1.00e�0 1.44e�2

2
BNet

pre�x 87728 66048 9.97e�1 8.37e�3 1.00e�0 1.18e�2
random 87728 66048 1.00e�0 2.30e�2 1.00e�0 2.19e�2

IBNet
pre�x 915120 66048 1.00e�0 5.74e�3 9.99e�1 7.80e�3

random 915120 66048 1.00e�0 1.11e�2 1.00e�0 2.12e�2

3
BNet

pre�x 66608 66048 9.99e�1 9.83e�3 1.00e�0 1.01e�2
random 66608 66048 1.00e�0 1.66e�2 1.00e�0 2.75e�2

IBNet
pre�x 275504 66048 9.98e�1 6.84e�3 9.97e�1 9.00e�3

random 275504 66048 1.00e�0 1.21e�2 1.00e�0 3.55e�2

in square-sum-layer. More accurate approximation is achieved using square-sum-layer
comparing to dense-dense-layer, which is due to fact that the functionals can be exactly
represented by the former task layer but not the latter. The post-training relative errors
for Butter�y-net and In�ated-Butter�y-net given the same initialization, Lx , and task layer,
remain similar in all cases. Hence the signi�cant larger number of parameters in In�ated-
Butter�y-net does not improve the post-training accuracy much. Most importantly, as we
compare the post-training relative errors of different initializations under dense-dense-
layer, Butter�y initialized networks achieves better accuracy comparing to its random ini-
tialized counterpart. The dense-dense-layers here are all randomly initialized and only
the weights in Butter�y-net and In�ated-Butter�y-net are initialized differently. Hence we
conclude that Butter�y initialization, even just on part of the whole neural network, helps
�nding better approximations in representing functionals (5.2) and (5.3).

1878 Y. Li, X. Cheng and J. Lu / Commun. Comput. Phys., 28 (2020), pp. 1838-1885

6 Conclusion and discussion
A low-complexity convolutional neural network with structured Butter�y initialization
and sparse cross-channel connections is proposed, motivated by the Butter�y scheme.
The functional representation by Butter�y-net is optimal in the sense that the model com-
plexity is O(K logN) and the computational complexity is O(N logN) for N and K being
the input and output vector lengths. The approximation accuracy to the Fourier kernel
is proved to exponentially decay as the depths of the Butter�y-net increases. We also
conduct an approximation analysis of Butter�y-net in representing a large class of prob-
lems in scienti�c computing and image and signal processing. Comparing Butter�y-net
to fully connected networks, the leading term in network complexity is reduced from
#�N/s down to #�K/s, where N is the input dimension, K is the effective dimension, and
s is regularization level of the problem. Regular CNN can be viewed a special network
under the analysis.

The trained Butter�y-nets from Butter�y initialization and random initialization are
applied to represent discrete Fourier transforms and energy functionals. For these ex-
amples, Butter�y-net achieves better accuracy than its no-trained version. We also com-
pared Butter�y-net against In�ated-Butter�y-net. From the numerical results, we �nd that
Butter�y-net is able to achieve similar accuracy as In�ated-Butter�y-net, while the number
of parameters is orders of magnitudes smaller. In the transfer learning settings, Butter�y-
net generalizes better than In�ated-Butter�y-net when the distribution of the input data
has domain shift.

The work can be extended in several directions. First, more applications of the
Butter�y-net can be explored such as those in image analysis and signal processing.
Likely, Butter�y-net is able to replace some CNN structures in practice such that simi-
lar accuracy can be achieved while the parameter number is much reduced. Second, our
current theoretical analysis does not address the case when the input data contain noise.
In particular, adding recti�ed layers in Butter�y-net can be interpreted as a thresholding
denoising operation applied to the intermediate representations; a statistical analysis is
desired.

Acknowledgments
The work of YL and JL is supported in part by National Science Foundation via grants
DMS-1454939, DMS-2012286 and ACI-1450280. XC is partially supported by NSF (DMS-
1818945, DMS-1820827), NIH (grant R01GM131642) and the Alfred P. Sloan Foundation.
We thank the anonymous referees for constructive suggestions.

A Proof of Theorem 2.1
Here we �rst include a well-known lemma of Chebyshev interpolation for completeness
and then prove Theorem 2.1.

Y. Li, X. Cheng and J. Lu / Commun. Comput. Phys., 28 (2020), pp. 1838-1885 1879

Lemma A.1. Let f (y) 2 C[a,b] and Pr be the space spanned by the monomials yr. The projection
operator Pr mapping f into its Lagrange interpolation on the r Chebyshev grid obeys

k f �Pr f k¥ �
�

2+
2
p

lnr
�

inf
g2Pr

k f �gk¥ . (A.1)

The proof of Lemma A.1 can be found in [45].

Proof of Theorem 2.1. The Fourier kernel K(x,t) = e�2p�x�t can be decomposed as

K(x,t) = e�2p�(x�t�x0�t�x�t0+x0�t0) �e�2p�x0 �t �e�2p�x�t0 �e2p�x0 �t0

= e�2p�R(x,t) �e�2p�x0�t �e�2p�x�t0 �e2p�x0 �t0 , (A.2)

where R(x,t)=(x�x0) �(t�t0), t0 and x0 are centers of B and A respectively.
Next, we show the r-term truncation error for the �rst term in the second line of (A.2).

Based on the power expansion of e�2p�R(x,t), i.e.,

e�2p�R(x,t) =
¥

å
k=0

(�2p�R(x,t))k

k!
, (A.3)

the r-term truncation error can be bounded as

d=

�����
e�2p�R(x,t)�

r

å
k=0

(�2p�R(x,t))k)
k!

�����
=

�����

¥

å
k=r+1

(�2p�R(x,t))k

k!

�����

�
¥

å
k=r+1

(pw(A)w(B))k

2kk!
�

¥

å
k=r+1

�
pew(A)w(B)

2k

�k

�
�

pew(A)w(B)
2r

�r

, (A.4)

where the last inequality uses w(A)w(B) � r
pe . We also notice that, for any �xed x,

år
k=0

(2p�R(x,�))k

k! 2Pr. Applying Lemma A.1, we obtain

e�2p�R(x,t)�
r

å
k=1

e�2p�R(x,tk)Lk(t)

¥

�
�

2+
2
p

lnr
�

d. (A.5)

By substituting the explicit expression of R(x,t), we obtain one of the conclusion,

e�2p�x�t�
r

å
k=1

e�2p�x�tke�2p�x0�(t�tk)Lk(t)

¥

�
�

2+
2
p

lnr
��

pew(A)w(B)
2r

�r

, (A.6)

for any x 2 A and t2 B.

Similarly, for any �xed t, we have år
k=0

(2p�R(x,t))k

k! 2 Pr(x). Hence the second conclu-
sion can be obtained through the same procedure.

1880 Y. Li, X. Cheng and J. Lu / Commun. Comput. Phys., 28 (2020), pp. 1838-1885

B Complex valued operation with ReLU activation function

A complex-valued linear operator can be represented through real-valued operation with
ReLU activation function. Assume we want to represent the complex-valued linear op-
eration

y= ax, (B.1)

where x,y 2 C can be generalized to vectors and a 2 C can be generalized to a complex-
valued matrix. We �rst introduce the real-valued representation for complex number-
s/vectors. A complex number x=<x+�=x2C is represented as

�
(<x)+ (=x)+ (<x)� (=x)�

�> , (B.2)

where (z)+ = max(z,0) and (z)� = �min(z,0) for any z 2 R. If x is a complex vector of
size n, then the real-valued representation concatenates (B.2) for each complex value and
results a real vector of size 4n.

The multiplication y = ax is produced as the ReLU activation function acting on a
matrix vector multiplication, i.e.,

s

0

BB@

0

BB@

<a �=a �<a =a
=a <a �=a �<a

�<a =a <a �=a
�=a �<a =a <a

1

CCA

0

BB@

(<x)+
(=x)+
(<x)�
(=x)�

1

CCA

1

CCA=

0

BB@

(<y)+
(=y)+
(<y)�
(=y)�

1

CCA, (B.3)

where the complex-valued linear operator a is extended to be a real-valued 4�4 matrix.
Extension of a to a matrix can also be done through concatenating in both row and col-
umn directions.

In order to simplify the description in this paper, we de�ne an extensive assign oper-
ator as �= such that the 4 by 4 matrix A in (B.3) then obeys A �= a.

The above approach of using ReLU activation function is also adopted in [49]. We
discuss the usage of other activation functions in the main text.

C Example signals of datasets
We provide instance input and output data for each dataset in Table 4, namely Fig. 6 for
DFT-Lfreq, Fig. 7 for DFT-Hfreq, Fig. 8 for DFTSmooth-Lfreq, and Fig. 9 for DFTSmooth-
Hfreq.

D Convergence behaviors
We provide four convergence behaviors for the training loss of Butter�y-net and In�ated-
Butter�y-net with random and Butter�y initialization applied to DFTSmooth-Lfreq in
Fig. 10. In all four networks, the number of layers after switch layer is Lx = 1. Other
settings have the similar convergence behaviors.

Y. Li, X. Cheng and J. Lu / Commun. Comput. Phys., 28 (2020), pp. 1838-1885 1881

(a) Input data ~x (b) Real part of output data ~y

Figure 6: One instance in dataset DFT-Lfreq.

(a) Input data ~x (b) Real part of output data ~y

Figure 7: One instance in dataset DFT-Hfreq.

(a) Input data ~x (b) Real part of output data ~y

Figure 8: One instance in dataset DFTSmooth-Lfreq.

1882 Y. Li, X. Cheng and J. Lu / Commun. Comput. Phys., 28 (2020), pp. 1838-1885

(a) Input data ~x (b) Real part of output data ~y

Figure 9: One instance in dataset DFTSmooth-Hfreq.

(a) Butter�y-net with Butter�y initialization (b) In�ated-Butter�y-net with Butter�y initial-
ization

(c) Butter�y-net with random initialization (d) In�ated-Butter�y-net with random initial-
ization

Figure 10: Convergence behavior for various networks applied to DFTSmooth-Lfreq dataset. The number of

layers after switch layer for all networks is Lx =1.

Y. Li, X. Cheng and J. Lu / Commun. Comput. Phys., 28 (2020), pp. 1838-1885 1883

References

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J.
Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Joze-
fowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. ManØ, R. Monga, S. Moore, D. Murray, C.
Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke,
V. Vasudevan, F. ViØgas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X.
Zheng. TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. URL
https://www.tensorflow.org/ . Software available from tensor�ow.org.

[2] C. Bao, Q. Li, Z. Shen, C. Tai, L. Wu, and X. Xiang. Approximation analysis of convolutional
neural networks, 2019.

[3] A. R. Barron. Universal approximation bounds for superpositions of a sigmoidal function.
IEEE Transactions on Information theory, 39(3):930�945, 1993.

[4] J. Behler and M. Parrinello. Generalized neural-network representation of high-dimensional
potential-energy surfaces. Physical review letters, 98(14):146401, 2007.

[5] Y. Bengio, I. J. Goodfellow, and A. Courville. Deep learning. Nature, 521(7553):436�444, 2015.
[6] J. Berg and K. Nyström. A uni�ed deep arti�cial neural network approach to partial differ-

ential equations in complex geometries. Neurocomputing, 317:28 � 41, 2018. ISSN 0925-2312.
doi: https://doi.org/10.1016/j.neucom.2018.06.056. URL http://www.sciencedirect.

com/science/article/pii/S092523121830794X .
[7] H. Bölcskei, P. Grohs, G. Kutyniok, and P. Petersen. Optimal approximation with sparsely

connected deep neural networks. SIAM Journal on Mathematics of Data Science, 1(1):8�45,
2019. doi: 10.1137/18M118709X. URL https://doi.org/10.1137/18M118709X .

[8] J.-F. Cai, B. Dong, S. Osher, and Z. Shen. Image restoration: total variation, wavelet frames,
and beyond. Journal of the American Mathematical Society, 25(4):1033�1089, 2012.

[9] E. J. CandŁs, L. Demanet, and L. Ying. Fast computation of Fourier integral operators. SIAM
J. Sci. Comput., 29(6):2464�2493, jan 2007. URL http://epubs.siam.org/doi/abs/10.1137/

060671139 .
[10] E. J. CandŁs, L. Demanet, and L. Ying. A fast butter�y algorithm for the computation of

Fourier integral operators. Multiscale Model. Simul., 7(4):1727�1750, jan 2009. URL http:

//epubs.siam.org/doi/abs/10.1137/080734339 .
[11] T. F. Chan and J. J. Shen. Image processing and analysis: variational, PDE, wavelet, and stochastic

methods, volume 94. SIAM, 2005.
[12] N. Cohen, O. Sharir, and A. Shashua. On the expressive power of deep learning: A tensor

analysis. In Conference on Learning Theory, pages 698�728, 2016.
[13] G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of con-

trol, signals and systems, 2(4):303�314, 1989.
[14] O. Delalleau and Y. Bengio. Shallow vs. deep sum-product networks. In Advances in Neural

Information Processing Systems, pages 666�674, 2011.
[15] L. Demanet and L. Ying. Discrete symbol calculus. SIAM Rev., 53(1):71�104, jan 2011. URL

http://epubs.siam.org/doi/10.1137/080731311 .
[16] L. Demanet, M. Ferrara, N. Maxwell, J. Poulson, and L. Ying. A butter�y algorithm for

synthetic aperture radar imaging. SIAM Journal on Imaging Sciences, 5(1):203�243, jan 2012.
URL http://epubs.siam.org/doi/10.1137/100811593 .

[17] W. E, J. Han, and A. Jentzen. Deep learning-based numerical methods for high-dimensional
parabolic partial differential equations and backward stochastic differential equations. Com-
munications in Mathematics and Statistics, 5(4):349�380, 2017.

1884 Y. Li, X. Cheng and J. Lu / Commun. Comput. Phys., 28 (2020), pp. 1838-1885

[18] R. Eldan and O. Shamir. The power of depth for feedforward neural networks. In Conference
on Learning Theory, pages 907�940, 2016.

[19] Y. Fan and L. Ying. Solving electrical impedance tomography with deep learning, jun 2019.
http://arxiv.org/abs/1906.03944.

[20] Y. Fan, L. Lin, L. Ying, and L. Zepeda-Nœæez. A multiscale neural network based on hierar-
chical matrices, 2018. https://arxiv.org/abs/1807.01883.

[21] Y. Fan, J. Feliu-Fabà, L. Lin, L. Ying, and L. Zepeda-Nœæez. A multiscale neural network
based on hierarchical nested bases. Res. Math. Sci., 6(2):21, mar 2019a. doi: 10.1007/
s40687-019-0183-3.

[22] Y. Fan, C. Orozco Bohorquez, and L. Ying. BCR-Net: A neural network based on the nonstan-
dard wavelet form. J. Comput. Phys., 384:1�15, may 2019b. doi: 10.1016/J.JCP.2019.02.002.

[23] J. Feliu-Faba, Y. Fan, and L. Ying. Meta-learning pseudo-differential operators with deep
neural networks, jun 2019. http://arxiv.org/abs/1906.06782.

[24] A. R. Gallant and H. White. There exists a neural network that does not make avoidable
mistakes. In Proceedings of the Second Annual IEEE Conference on Neural Networks, San Diego,
CA, I, 1988.

[25] J. He and J. Xu. MgNet: A uni�ed framework of multigrid and convolutional neural net-
work. Science China Mathematics, 62(7):1331�1354, jul 2019. doi: 10.1007/s11425-019-9547-2.
URL http://link.springer.com/10.1007/s11425- 019- 9547- 2 .

[26] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are universal
approximators. Neural networks, 2(5):359�366, 1989.

[27] Y. Khoo and L. Ying. SwitchNet: a neural network model for forward and inverse scattering
problems, oct 2018. http://arxiv.org/abs/1810.09675.

[28] Y. Khoo, J. Lu, and L. Ying. Solving for high-dimensional committor functions using arti�cial
neural networks. Research in the Mathematical Sciences, 6(1):1, 2018. ISSN 2197-9847. doi:
10.1007/s40687-018-0160-2. URL https://doi.org/10.1007/s40687- 018- 0160- 2 .

[29] S. Kunis and I. Melzer. A stable and accurate butter�y sparse Fourier transform. SIAM
J. Numer. Anal., 50(3):1777�1800, jan 2012. URL http://epubs.siam.org/doi/10.1137/

110839825 .
[30] N. Le Roux and Y. Bengio. Representational power of restricted Boltzmann machines and

deep belief networks. Neural computation, 20(6):1631�1649, 2008.
[31] Y. Li and H. Yang. Interpolative butter�y factorization. SIAM J. Sci. Comput., 39(2):A503�

A531, 2017. URL http://dx.doi.org/10.1137/16M1074941 .
[32] Y. Li, H. Yang, E. R. Martin, K. L. Ho, and L. Ying. Butter�y factorization. Multiscale Model.

Simul., 13(2):714�732, jan 2015a. URL http://epubs.siam.org/doi/10.1137/15M1007173 .
[33] Y. Li, H. Yang, and L. Ying. A multiscale butter�y algorithm for multidimensional Fourier

integral operators. Multiscale Model. Simul., 13(2):1�18, jan 2015b. URL http://epubs.siam.

org/doi/10.1137/140997658http://arxiv.org/abs/1411.7418 .
[34] Y. Li, H. Yang, and L. Ying. Multidimensional butter�y factorization. Applied and Computa-

tional Harmonic Analysis, 44(3):737�758, may 2018. doi: 10.1016/J.ACHA.2017.04.002. URL
https://www.sciencedirect.com/science/article/pii/S1063520317300271 .

[35] Y. Li, J. Lu, and A. Mao. Variational training of neural network approximations of solution
maps for physical models, may 2019. http://arxiv.org/abs/1905.02789.

[36] S. Liang and R. Srikant. Why deep neural networks for function approximation? arXiv
preprint arXiv:1610.04161, 2016.

[37] Z. Long, Y. Lu, X. Ma, and B. Dong. PDE-net: Learning PDEs from data. 80:3208�3216, 2018.
URL http://proceedings.mlr.press/v80/long18a.html .

Y. Li, X. Cheng and J. Lu / Commun. Comput. Phys., 28 (2020), pp. 1838-1885 1885

[38] J. Lu, Z. Shen, H. Yang, and S. Zhang. Deep network approximation for smooth functions,
jan 2020. http://arxiv.org/abs/2001.03040.

[39] S. Mallat. A wavelet tour of signal processing: the sparse way. Academic press, 2008.
[40] H. Mhaskar, Q. Liao, and T. Poggio. Learning functions: when is deep better than shallow.

arXiv preprint arXiv:1603.00988, 2016.
[41] H. N. Mhaskar and T. Poggio. Deep vs. shallow networks: An approximation theory per-

spective. Analysis and Applications, 14(06):829�848, 2016.
[42] E. Michielssen and A. Boag. A multilevel matrix decomposition algorithm for analyzing

scattering from large structures. IEEE Trans. Antennas Propag., 44(8):1086�1093, 1996. URL
http://ieeexplore.ieee.org/document/511816/ .

[43] G. F. Montufar, R. Pascanu, K. Cho, and Y. Bengio. On the number of linear regions of deep
neural networks. In Advances in neural information processing systems, pages 2924�2932, 2014.

[44] M. O’Neil, F. Woolfe, and V. Rokhlin. An algorithm for the rapid evaluation of special func-
tion transforms. Appl. Comput. Harmon. Anal., 28(2):203�226, 2010.

[45] T. J. Rivlin. Chebyshev polynomials: from approximation theory to algebra and number theory.
Wiley-Interscience, 2nd edition, 1990.

[46] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical
image segmentation. In Med. Image Comput. Comput. Interv., volume 9351, pages 234�241.
Springer Verlag, 2015. ISBN 9783319245737. doi: 10.1007/978-3-319-24574-4_28.

[47] E. Schneider, L. Dai, R. Q. Topper, C. Drechsel-Grau, and M. E. Tuckerman. Stochastic neural
network approach for learning high-dimensional free energy surfaces. Physical review letters,
119(15):150601, 2017.

[48] Matus Telgarsky. Bene�ts of depth in neural networks. 49:1517�1539, 2016. URL http:

//proceedings.mlr.press/v49/telgarsky16.html .
[49] Z. Xu, Y. Li, and X. Cheng. Butter�y-Net2: Simpli�ed butter�y-net and Fourier transform

initialization, dec 2019. http://arxiv.org/abs/1912.04154.
[50] D. Yarotsky. Error bounds for approximations with deep ReLU networks. Neural Networks,

94:103�114, oct 2017a. ISSN 18792782. doi: 10.1016/j.neunet.2017.07.002.
[51] D. Yarotsky. Error bounds for approximations with deep ReLU networks. Neural Networks,

94:103�114, 2017b.
[52] L. Ying. Sparse Fourier transform via butter�y algorithm. SIAM J. Sci. Comput., 31(3):1678�

1694, jan 2009. URL http://epubs.siam.org/doi/10.1137/08071291X .
[53] L. Zhang, J. Han, H. Wang, R. Car, and W. E. Deepcg: Constructing coarse-grained models

via deep neural networks. The Journal of Chemical Physics, 149(3):034101, 2018. doi: 10.1063/
1.5027645. URL https://doi.org/10.1063/1.5027645 .

[54] D.-X. Zhou. Universality of deep convolutional neural networks. Applied and Computational
Harmonic Analysis, 2019. ISSN 1063-5203. doi: https://doi.org/10.1016/j.acha.2019.06.004.
URL http://www.sciencedirect.com/science/article/pii/S1063520318302045 .

